Abstract:
A method for forming an electronic circuit on a strained semiconductor substrate, including the steps of: forming, on a first surface of a semiconductor substrate, electronic components defining electronic chips to be sawn; and forming at least portions of a layer of a porous semiconductor material on the side of a second surface of the semiconductor substrate, opposite to the first surface, to bend the semiconductor substrate.
Abstract:
A method for making a silicon layer extending on an insulation layer, including the steps of forming a silicon-germanium layer on at least a portion of a silicon wafer; transforming portions of the silicon-germanium layer into porous silicon pads; growing a monocrystalline silicon layer on the silicon-germanium layer and on the porous silicon pads; removing the silicon-germanium layer; oxidizing the porous silicon pads; and depositing an insulation material on the silicon layer.
Abstract:
A method for manufacturing an insulated semiconductor layer, including: forming a porous silicon layer on a single-crystal silicon surface; depositing an insulating material so that it penetrates into the pores of the porous silicon layer; eliminating the insulating material to expose the upper surface of the porous silicon; and growing by epitaxy a semiconductor layer.
Abstract:
Transistor type semiconducting device comprising: a substrate, an insulating layer comprising sidewalls formed on each part of the source zone and the drain zone, drain, channel and source zones, the channel zone being formed on the insulating layer and being strained by the drain and the source zones, between the side parts, a grid, separated from the channel by a grid insulator.
Abstract:
A process for assembling a first wafer and a second wafer each bevelled on their peripheries includes excavating the bevelled peripheral part of at least one first side of the first wafer to create a deposit bordering the region excavated in the material of the first wafer. The first side and a second side of the second wafer are then bonded together.
Abstract:
A housing includes a body with a first silicon element and a second porous silicon element, at least one first cavity provided in the porous silicon element, a first electrically conducting contact area electrically coupled to at least a portion of at least one internal wall of the at least one first cavity, and a second electrically conducting contact area electrically coupled to a different portion of the at least one internal wall of the second porous silicon element of the at least one first cavity, wherein the two contact areas are electrically isolated from each other.
Abstract:
A method for forming, in an integrated circuit, a localized region of a material difficult to etch, including the steps of forming a first silicon oxide layer having a thickness smaller than 1 nm on a silicon substrate; depositing, on the first layer, a second layer selectively etchable with respect to the first layer; forming in the second layer an opening according to the pattern of said localized region; selectively growing on the second layer, around the opening, a germanium layer, the material of the second layer being chosen to enable this selective growth, whereby there exists in the germanium an opening conformable with the above opening; depositing the material difficult to etch so that it does not deposit on the germanium; depositing a conductive layer to fill the opening in the germanium; performing a leveling to expose the germanium; and removing the germanium and the first and second layers.
Abstract:
An integrated circuit (IC) includes at least one capacitor with metal electrodes. At least one of the electrodes (10 or 30) is formed from at least surface-silicided hemispherical grain silicon or silicon alloy. A fabrication process for obtaining such a capacitor with silicided metal electrodes is also provided.