摘要:
A method for fabricating semiconductor packages is disclosed, including mounting and electrically connecting a semiconductor chip onto a chip carrier; mounting a heat-dissipating structure on the semiconductor chip; placing the heat-dissipating structure into a mold cavity for filling therein a packaging material to form an encapsulant, wherein the heat-dissipating structure has a heat spreader having a size larger than that of the predetermined size of the semiconductor package, a covering layer formed on the, and a plurality of protrusions formed on edges of the covering layer that are free from being corresponding in position to the semiconductor chip, such that the protrusions can abut against a top surface of the mold cavity to prevent the heat spreader from being warped; and finally performing a singulation process according to the predetermined size and removing the encapsulant formed on the covering layer to form the desired semiconductor package. Also, this invention discloses a heat-dissipating structure applicable to the method described above.
摘要:
A heat dissipation semiconductor package includes a chip carrier, a semiconductor chip, a heat conductive adhesive, a heat dissipation member, and an encapsulant. The semiconductor chip is flip-chip mounted on the chip carrier and defined with a heat conductive adhesive mounting area. Periphery of the heat adhesive mounting area is spaced apart from edge of the semiconductor chip. The heat dissipation member is mounted on the heat conductive adhesive formed in the heat conductive adhesive mounting area. The encapsulant formed between the chip carrier and the heat dissipation member encapsulates the semiconductor chip and the heat conductive adhesive, and embeds edges of the active surface and non-active surface and side edge of the semiconductor chip, thereby increasing bonding area between the encapsulant and the semiconductor chip. The side edges of the heat conductive adhesive and the semiconductor chip are not flush with each other, thereby preventing propagation of delamination.
摘要:
A heat dissipation semiconductor package includes a chip carrier, a semiconductor chip, a heat conductive adhesive, a heat dissipation member, and an encapsulant. The semiconductor chip is flip-chip mounted on the chip carrier and defined with a heat conductive adhesive mounting area. Periphery of the heat adhesive mounting area is spaced apart from edge of the semiconductor chip. The heat dissipation member is mounted on the heat conductive adhesive formed in the heat conductive adhesive mounting area. The encapsulant formed between the chip carrier and the heat dissipation member encapsulates the semiconductor chip and the heat conductive adhesive, and embeds edges of the active surface and non-active surface and side edge of the semiconductor chip, thereby increasing bonding area between the encapsulant and the semiconductor chip. The side edges of the heat conductive adhesive and the semiconductor chip are not flush with each other, thereby preventing propagation of delamination.
摘要:
A method for fabricating a heat-dissipating package and a heat-dissipating structure applicable thereto are disclosed. The method includes: mounting and electrically connecting to a chip carrier a semiconductor chip mounted with a heat-dissipating structure; disposing on the heat-dissipating structure a covering layer protrudingly formed with an abutting portion surrounding the covering layer, wherein the size of the heat-dissipating structure is greater than the predetermined one of the package to position the chip carrier in a cavity of a mold and encapsulate the heat-dissipating structure and semiconductor chip by encapsulant, and the protruding portion abuts against a top surface of the cavity and prevent the heat-dissipating structure from warping; and singulating the package and removing the encapsulant from the covering layer thereunder according to the predetermined size of the package.
摘要:
A heat dissipating semiconductor package and a fabrication method therefor are provided. The fabrication method for the heat dissipating semiconductor package mainly includes steps of: containing a substrate having a chip mounted thereon in an aperture of a carrier; mounting a heat dissipating sheet having supporting portions on the carrier with the heat dissipating sheet being attached on the chip; forming an encapsulant to encapsulate the semiconductor chip and the heat dissipating structure; removing a part of the encapsulant above the heat dissipating sheet with a part of the heat dissipating sheet exposed from the encapsulant by lapping; and forming a cover layer on the part of heat dissipating sheet to prevent it from oxidation; and cutting along a predetermined size of the semiconductor package, thereby heat generated from an operation of the chip is dissipated via the heat dissipating structure.
摘要:
A heat dissipating semiconductor package and the fabrication method therefor are provided. The fabrication method for the heat dissipating semiconductor package mainly includes steps of: containing a substrate having a chip mounted thereon in an aperture of a carrier, wherein the carrier has an electroconductive layer; allowing a heat dissipating structure having supporting portions to be mounted on and electrically connected to the electroconductive layer of the carrier via the supporting portions thereof while heat dissipating structure being mounted on the chip; after an encapsulation process and removing a part of the encapsulant above the heat dissipating sheet by lapping to expose a surface of the heat dissipating structure from the encapsulant, depositing and forming a metal passivation layer on the surface of the heat dissipating structure by electroplating for preventing the heat dissipating structure from oxidizing.
摘要:
An electronic carrier board and a package structure thereof are provided. The electronic carrier board includes a carrier, at least one pair of bond pads formed on the carrier, and a protective layer covering the carrier. An opening is formed in the protective layer to expose at least three sides of each of the paired bond pads. The protective layer includes at least one independent residual portion located in the opening and between the paired bond pads, such that an electronic component is mounted on the independent residual portion and electrically connected to the bond pads. A groove without a dead space is formed between the electronic component and the carrier, such that a molding compound for encapsulating the electronic component can flow through the groove to fill the opening and a space under the electronic component and encapsulate the at least three sides of each of the bond pads.
摘要:
A method for fabricating semiconductor packages is proposed. A plurality of substrates each having a chip thereon are prepared. Each substrate has similar length and width to the predetermined length and width of the semiconductor package. A carrier having a plurality of openings is prepared. Each opening is larger in length and width than the substrate. The substrates are positioned in the corresponding openings, and gaps between the substrates and the carrier are sealed. A molding process is performed to form an encapsulant over each opening to encapsulate the chip. An area on the carrier covered by the encapsulant is larger in length and width than the opening. After performing a mold-releasing process, a plurality of the semiconductor packages are formed by a singulation process to cut along substantially edges of each substrate according to the predetermined size of the semiconductor package. A waste of substrate material is avoided.
摘要:
A heat-dissipating semiconductor package and a fabrication method thereof are provided. A semiconductor chip is mounted and electrically connected to a substrate. A heat-dissipating structure includes a heat sink and at least one supporting portion, wherein the supporting portion is attached to the substrate at a position outside a predetermined package area for the semiconductor package, and the semiconductor chip is disposed under the heat sink. An encapsulant is formed on the substrate to encapsulate the semiconductor chip and the heat-dissipating structure, wherein a projection area of the encapsulant on the substrate is larger in size than the predetermined package area. A cutting process is performed along edges of the predetermined package area to remove parts of the encapsulant, the supporting portion and the substrate, which are located outside the predetermined package area, so as to form the semiconductor package integrated with the heat-dissipating structure.
摘要:
A method for fabricating semiconductor packages is proposed. A plurality of substrates each having a chip thereon are prepared. Each substrate has similar length and width to the predetermined length and width of the semiconductor package. A carrier having a plurality of openings is prepared. Each opening is larger in length and width than the substrate. The substrates are positioned in the corresponding openings, and gaps between the substrates and the carrier are sealed. A molding process is performed to form an encapsulant over each opening to encapsulate the chip. An area on the carrier covered by the encapsulant is larger in length and width than the opening. After performing a mold-releasing process, a plurality of the semiconductor packages are formed by a singulation process to cut along substantially edges of each substrate according to the predetermined size of the semiconductor package. A waste of substrate material is avoided.