摘要:
A method for the fabrication of nanostructured semiconducting, photoconductive, photovoltaic, optoelectronic and electrical battery thin films and materials at low temperature, with no molecular template and no organic contaminants. High-quality metal oxide semiconductor, photovoltaic and optoelectronic materials can be fabricated with nanometer-scale dimensions and high dopant densities through the use of low-temperature biologically inspired synthesis routes, without the use of any biological or biochemical templates.
摘要:
The in vitro polymerization of silica, silicone, non-silicon metalloid-oxane and metallo-oxane polymer networks, by combining a catalyst and a substrate to polymerize the substrate to form silica, polysiloxanes, polymetalloid-oxanes polymetallo-oxanes (metal oxides), polyorganometalloid oxanes, polyorganometallo oxanes, and the polyhydrido derivatives thereof, at about neutral pH. The nanostructure-directing catalysts have a nucleophilic functionality and a hydrogen-bonding acceptor group, and include: silicateins, enzymes that work by a mechanism functionally related to that of the silicateins; self-assembling peptides related to those synthesized and demonstrated capable of acting as biomimetic substitutes for the silicateins; non-peptide-based synthetic polymers containing a nucleophilic group and a hydrogen bonding amine such that the polymer functions by a mechanism of action related to that of the silicateins; materials having such chemical functionality as a nucleophilic group and or a hydrogen bonding amine which, acting in concert with nanoconfinement and or chemical functionality of the surface or matrix to which the functionality is attached, acts catalytically by a mechanism related to that of the silicateins; and small-molecule non-polymeric biomimetic catalysts that operate by the same mechanism as silicateins. The substrate is selected from groups consisting of silicon alkoxides, non-silicon metalloid alkoxides or metal alkoxides, and any organic, organometallic or hydrido derivatives of the foregoing; inorganic and organic oxygen-containing chelates of silicon, non-silicon metalloids or metals and any organic, organometallic or hydrido derivatives of the foregoing; and inorganic and organic esters of the hydoxides of silicon, non-silicon metalloids or metals and any organic, organometallic or hydrido derivatives of the foregoing; and inorganic and organic hydolyzable salts, complexes or conjugates of the hydroxides of silicon, non-silicon metalloids or metals and any organic, organometallic and hydrido derivates of the foregoing.
摘要:
Disclosed herein is a process for stripping oligonucleotide target from a microarray to allow reuse of the microarray. The process comprises providing a microarray having probe oligonucleotides attached thereto and target oligonucleotides hybridized to the probe oligonucleotides. The microarray is then incubated with a formulation comprising an organic solvent and an organic base. The target oligonucleotides are substantially removed from the microarray by the formulation. Alternatively, prior to or after incubation of the microarray with the formulation, the microarray may be contacted to an aqueous solution of a base to improve the efficiency of removal of the target oligonucleotides.
摘要:
We describe apparatuses, method, reagents, and kits for conducting assays as well as process for their preparation. They are particularly well suited for conducting automated sampling, sample preparation, and analysis in a multi-well plate assay format. For example, they may be used for automated analysis of liquid samples in a clinical point of care setting.
摘要:
Assay cartridges are described that have purification, reaction, and detection zones and other fluidic components which can include sample chambers, waste chambers, conduits, vents, reagent chambers, reconstitution chambers and the like. The assay cartridges are used to conduct multiplexed nucleic acid measurements. Also described are kits including such cartridges, methods of using the same, and a reader configured to analyze an assay conducted using an assay cartridge.
摘要:
Assay cartridges are described that have purification, reaction, and detection zones and other fluidic components which can include sample chambers, waste chambers, conduits, vents, reagent chambers, reconstitution chambers and the like. The assay cartridges are used to conduct multiplexed nucleic acid measurements. Also described are kits including such cartridges, methods of using the same, and a reader configured to analyze an assay conducted using an assay cartridge.
摘要:
The present invention provides a process to detect binding events on an electrode microarray. A microarray is provided having addressable electrodes and two or more different types of capture complexes at sites corresponding to the electrodes. The capture complexes capture analytes. Enzymes are attached to form a reporter complex. Substrate solutions are sequentially contacted to make enzyme products that are detectable at the electrodes by a difference in the electrical response at electrodes having the enzyme product and those not having the enzyme product. The enzyme product may be a solid deposition product. The electrical properties of electrodes on the microarray are read for the presence of the enzyme product by sequentially switching each electrode held at a constant voltage to ground and then back to the constant voltage.
摘要:
Assay cartridges are described that have a plurality of chambers and a fluidic network that includes fluidic conduits and a multi-port valve designed to selectively connect the valve inlet and one valve outlet through a fluidic connector in the valve as the remaining valve outlets are sealed.
摘要:
Assay cartridges are described that have a plurality of chambers and a fluidic network that includes fluidic conduits and a multi-port valve designed to selectively connect the valve inlet and one valve outlet through a fluidic connector in the valve as the remaining valve outlets are sealed.
摘要:
This invention provides approaches to improve the signal to noise ratio (S/N) in electrochemical measurements (e.g., amperometry, voltammetry, etc.). In particular, a method is described wherein the faradaic current is temporally dissociated from the charging current associated with reading the charge of a redox-active species (e.g., a self-assembled monolayer (SAM)). This method, designated herein as open circuit potential amperometry (OCPA), quantitatively reads the charge of the redox species bound to (electrically coupled to) an electrode surface, while discriminating against both charging current(s) and amperometric signal(s) that arise, e.g., from diffusion-based species in solution.