Abstract:
A switching element includes: a first electrode; a second electrode; and a silicon-containing chalconitride layer between the first electrode and the second electrode. A switching device includes: a threshold switch material layer between a first electrode and a second electrode. The threshold switch material layer includes a cationic metal element, a chalcogen element, a silicon element and a nitrogen element. A memory device include: a plurality of first wirings arranged in parallel with each other; a plurality of second wirings crossing the first wirings, and arranged in parallel with each other; and a memory cell formed at each intersection of the plurality of first wirings and the plurality of second wirings. The memory cell includes a laminate having a silicon-containing chalconitride layer, an intermediate electrode, and a memory layer.
Abstract:
The present disclosure relates to a semiconductor device including an oxygen gettering layer between a group III-V compound semiconductor layer and a dielectric layer, and a method of fabricating the semiconductor device. The semiconductor device may include a compound semiconductor layer; a dielectric layer disposed on the compound semiconductor layer; and an oxygen gettering layer interposed between the compound semiconductor layer and the dielectric layer. The oxygen gettering layer includes a material having a higher oxygen affinity than a material of the compound semiconductor layer.
Abstract:
According to an example embodiment, a method of operating a semiconductor device having a variable resistance device includes: applying a first voltage to the variable resistance device to change a resistance value of the variable resistance device from a first resistance value to a second resistance value that is different from the first resistance value; sensing a first current flowing through the variable resistance device to which the first voltage is applied; determining a second voltage used for changing the variable resistance device from the second resistance value to the first resistance value, based on a dispersion of the sensed first current; and applying the determined second voltage to the variable resistance device.
Abstract:
A method of operating a semiconductor device that includes a variable resistance device, the method including applying a first voltage to the variable resistance device so as to change a resistance value of the variable resistance device from a first resistance value to a second resistance value that is different from the first resistance value; sensing first current flowing through the variable resistance device to which the first voltage is applied; determining whether the first current falls within a predetermined range of current; and if the first current does not fall within the first range of current, applying an additional first voltage that is equal to the first voltage to the variable resistance device.
Abstract:
A method of forming carbon fibers at a low temperature below 450° C. using an organic-metal evaporation method is provided. The method includes: heating a substrate and maintaining the substrate at a temperature of 200 to 450° C. after loading the substrate into a reaction chamber; preparing an organic-metal compound containing Ni; forming an organic-metal compound vapor by vaporizing the organic-metal compound; and forming carbon fibers on the substrate by facilitating a chemical reaction between the organic-metal compound vapor and a reaction gas containing ozone in the reaction chamber.
Abstract:
Provided are a complementary metal oxide semiconductor (CMOS) device and a method of manufacturing the same. In the CMOS device, a buffer layer is disposed on a silicon substrate, and a first layer including a group III-V material is disposed on the buffer layer. A second layer including a group IV material is disposed on the buffer layer or the silicon substrate while being spaced apart from the first layer.
Abstract:
A substrate structure, a complementary metal oxide semiconductor (CMOS) device including the substrate structure, and a method of manufacturing the CMOS device are disclosed, where the substrate structure includes: a substrate, at least one seed layer on the substrate formed of a material including boron (B) and/or phosphorus (P), and a buffer layer on the seed layer. This substrate structure makes it possible to reduce the thickness of the buffer layer and also improve the performance characteristics of a semiconductor device formed with the substrate structure.
Abstract:
Example embodiments relate to a resistive random access memory (RRAM) and a method of manufacturing the RRAM. A RRAM according to example embodiments may include a lower electrode, which may be formed on a lower structure (e.g., substrate). A resistive layer may be formed on the lower electrode, wherein the resistive layer may include a transition metal dopant. An upper electrode may be formed on the resistive layer. Accordingly, the transition metal dopant may form a filament in the resistive layer that operates as a current path.
Abstract:
Provided may be a multi-layer electrode, a cross point resistive memory array and method of manufacturing the same. The array may include a plurality of first electrode lines arranged parallel to each other; a plurality of second electrode lines crossing the first electrode lines and arranged parallel to each other; and a first memory resistor at intersections between the first electrode lines and the second electrode lines, wherein at least one of the first electrode lines and the second electrode lines have a multi-layer structure including a first conductive layer and a second conductive layer formed of a noble metal.