Abstract:
Described herein are cell-based analytic methods, including a method of incorporating nucleic acid sequences into reaction products from a cell population, wherein the nucleic acid sequences are incorporated into the reaction products of each cell individually or in small groups of cells individually. Also described herein is a matrix-type microfluidic device that permits at least two reagents to be delivered separately to each cell or group of cells, as well as primer combinations useful in the method and device.
Abstract:
Methods for cell analysis are provided, comprising cell capturing, characterization, transport, and culture. In an exemplary method individual cells (and/or cellular units) are flowed into a microfluidic channel, the channel is partitioned into a plurality of contiguous segments, capturing at least one cell in at least one segment, A characteristic of one or more captured cells is determined and the cell(s) and combinations of cells are transported to specified cell holding chamber(s) based on the determined characteristic(s). Also provided are devices and systems for cell analysis.
Abstract:
Provided are microfluidic devices and methods for fabricating and bonding such devices. Also provided are kits for analyzing analyte-containing samples and for lysing cells.
Abstract:
Reagents and methods are provided for detecting the presence of a target polynucleotide in a sample are disclosed. In one aspect, a method for producing a labeled amplification product by amplifying a target nucleic acid sequence to produce an amplification product comprising the target sequence, a first probe-binding sequence 5′ to the target sequence, and a second probe-binding sequence 3′ to the target sequence, thereby producing an amplification product; and hybridizing a first detection probe to the amplification product, the first detection probe comprising a first segment that hybridizes to the first probe-binding sequence and a second segment that hybridizes to the second probe-binding sequence, thereby producing a labeled amplification product is disclosed.
Abstract:
Methods, systems, and devices are described for multiple single-cell capturing and processing utilizing microfluidics. Tools and techniques are provided for capturing, partitioning, and/or manipulating individual cells from a larger population of cells along with generating genetic information and/or reactions related to each individual cell. Different capture configurations may be utilized to capture individual cells and then processing each individual cell in a multi-chamber reaction configuration. Some embodiments may provide for specific target amplification, whole genome amplification, whole transcriptome amplification, real-time PCR preparation, copy number variation, preamplification, mRNA sequencing, and/or haplotyping of the multiple individual cells that have been partitioned from the larger population of cells. Some embodiments may provide for other applications. Some embodiments may be configured for imaging the individual cells or associated reaction products as part of the processing. Reaction products may be harvested and/or further analyzed in some cases.
Abstract:
Methods, systems, and devices are described for multiple single-cell capturing and processing utilizing microfluidics. Tools and techniques are provided for capturing, partitioning, and/or manipulating individual cells from a larger population of cells along with generating genetic information and/or reactions related to each individual cell. Different capture configurations may be utilized to capture individual cells and then processing each individual cell in a multi-chamber reaction configuration. Some embodiments may provide for specific target amplification, whole genome amplification, whole transcriptome amplification, real-time PCR preparation, copy number variation, preamplification, mRNA sequencing, and/or haplotyping of the multiple individual cells that have been partitioned from the larger population of cells. Some embodiments may provide for other applications. Some embodiments may be configured for imaging the individual cells or associated reaction products as part of the processing. Reaction products may be harvested and/or further analyzed in some cases.
Abstract:
Described herein are cell-based analytic methods, including a method of incorporating nucleic acid sequences into reaction products from a cell population, wherein the nucleic acid sequences are incorporated into the reaction products of each cell individually or in small groups of cells individually. Also described herein is a matrix-type microfluidic device that permits at least two reagents to be delivered separately to each cell or group of cells, as well as primer combinations useful in the method and device.
Abstract:
Methods, systems, and devices are described for multiple single-cell capturing and processing utilizing microfluidics. Tools and techniques are provided for capturing, partitioning, and/or manipulating individual cells from a larger population of cells along with generating genetic information and/or reactions related to each individual cell. Different capture configurations may be utilized to capture individual cells and then processing each individual cell in a multi-chamber reaction configuration. Some embodiments may provide for specific target amplification, whole genome amplification, whole transcriptome amplification, real-time PCR preparation, copy number variation, preamplification, mRNA sequencing, and/or haplotyping of the multiple individual cells that have been partitioned from the larger population of cells. Some embodiments may provide for other applications. Some embodiments may be configured for imaging the individual cells or associated reaction products as part of the processing. Reaction products may be harvested and/or further analyzed in some cases.
Abstract:
Methods for cell analysis are provided, comprising cell capturing, characterization, transport, and culture. In an exemplary method individual cells (and/or cellular units) are flowed into a microfluidic channel, the channel is partitioned into a plurality of contiguous segments, capturing at least one cell in at least one segment, A characteristic of one or more captured cells is determined and the cell(s) and combinations of cells are transported to specified cell holding chamber(s) based on the determined characteristic(s). Also provided are devices and systems for cell analysis.
Abstract:
Methods for cell analysis are provided, comprising cell capturing, characterization, transport, and culture. In an exemplary method individual cells (and/or cellular units) are flowed into a microfluidic channel, the channel is partitioned into a plurality of contiguous segments, capturing at least one cell in at least one segment. A characteristic of one or more captured cells is determined and the cell(s) and combinations of cells are transported to specified cell holding chamber(s) based on the determined characteristic(s). Also provided are devices and systems for cell analysis.