MODIFIED MICROORGANISM AND METHODS OF USING SAME FOR PRODUCING BUTADIENE AND 1-PROPANOL AND/OR 1,2-PROPANEDIOL
    5.
    发明申请
    MODIFIED MICROORGANISM AND METHODS OF USING SAME FOR PRODUCING BUTADIENE AND 1-PROPANOL AND/OR 1,2-PROPANEDIOL 审中-公开
    改良的微生物及其生产丁二酸和1-丙醇和/或1,2-丙二醇的方法

    公开(公告)号:US20150064760A1

    公开(公告)日:2015-03-05

    申请号:US14479071

    申请日:2014-09-05

    Applicant: BRASKEM S.A.

    CPC classification number: C12P7/18 C07K14/395 C12N15/63 C12P5/026 C12P7/04

    Abstract: The present disclosure provides a non-naturally occurring microorganism comprising: one or more polynucleotides encoding one or more enzymes in a pathway that produces acetyl-CoA; one or more polynucleotides encoding one or more enzymes in a pathway that catalyze a conversion of crotonyl alcohol, 5-hydroxy-3-ketovaleryl-CoA, 3-ketopent-4-enoyl-CoA, or 3,5-ketovaleryl-CoA to butadiene; one or more polynucleotides encoding one or more enzymes in a pathway that catalyze a conversion of dihydroxyacetone-phosphate to 1-propanol and/or 1,2-propanediol, wherein the microorganism has reduced levels of pyruvate decarboxylase enzymatic activity (e.g., the microorganism comprises a disruption of one or more enzymes that decarboxylate pyruvate and/or a disruption of one or more transcription factors of one or more enzymes that decarboxylate pyruvate), and wherein the microorganism is capable of growing on a C6 sugar as a sole carbon source under anaerobic conditions. Also provided are methods of using the disclosed non-naturally occurring microorganisms in methods for the coproduction of butadiene and 1-propanol and/or 1,2-propanediol.

    Abstract translation: 本公开提供了非天然存在的微生物,其包含:在产生乙酰辅酶A的途径中编码一种或多种酶的一种或多种多核苷酸; 在催化巴豆醇,5-羟基-3-酮戊酰基-CoA,3-酮戊-4-烯酰基-CoA或3,5-酮戊酰基-CoA转化为丁二烯的途径中编码一种或多种酶的一种或多种多核苷酸 ; 一种或多种编码一种或多种酶的多核苷酸,其在催化二羟丙基磷酸盐转化为1-丙醇和/或1,2-丙二醇的途径中,其中微生物具有降低的丙酮酸脱羧酶水平的酶活性(例如,微生物包含 破坏一种或多种脱羧酸丙酮酸酶和/或破坏一种或多种丙酮酸脱羧酸酶的一种或多种转录因子的酶),并且其中所述微生物能够生长在C6糖作为唯一碳源的厌氧 条件。 还提供了在共同生产丁二烯和1-丙醇和/或1,2-丙二醇的方法中使用所公开的非天然存在的微生物的方法。

    Microorganisms and methods for the production of glycolic acid and glycine via reverse glyoxylate shunt

    公开(公告)号:US11384369B2

    公开(公告)日:2022-07-12

    申请号:US16791556

    申请日:2020-02-14

    Applicant: Braskem S.A.

    Abstract: The present invention provides biochemical pathways, glyoxylate producing recombinant microorganisms, and methods for the production and yield improvement of glycolic acid and/or glycine via a reverse glyoxylate shunt. The reverse glyoxylate shunt comprises an enzyme that catalyzes the carboxylation of phosphoenol pyruvate (PEP) to oxaloacetate (OAA), or an enzyme that catalyzes the carboxylation of pyruvate to oxaloacetate (OAA) or an enzyme that catalyzes the carboxylation of pyruvate to malate or a combination of any of the previous reactions; an enzyme that catalyzes the conversion of malate to malyl-CoA; an enzyme that catalyzes the conversion of malyl-CoA to glyoxylate and acetyl-CoA; and optionally an enzyme that catalyzes the conversion of oxaloacetate (OAA) to malate. Glyoxylate is reduced to produce glycolate. Alternatively, glyoxylate is converted to glycine. The reverse glyoxylate shunt pathway of the present invention can be utilized synergistically with other glycolic acid and/or glycine producing pathways to increase product yield.

Patent Agency Ranking