Abstract:
Disclosed are methods for stress memorization techniques. In one illustrative embodiment, the present disclosure is directed to a method involving fabricating an NMOS transistor device having a substrate and a gate structure disposed over the substrate, the substrate including a channel region underlying, at least partially, the gate structure, the fabricating including: forming a source and drain cavity in the substrate; with an in situ doped semiconductor material, epitaxially growing a source and drain region within the source and drain cavity; performing an amorphization ion implantation process by implanting an amorphization ion material into the source and drain region; forming a capping material layer above the NMOS transistor device; with the capping material layer in position, performing a stress forming anneal process to thereby form stacking faults in the source and drain region; and removing the capping material layer.
Abstract:
Aspects of the present invention relate to approaches for forming a semiconductor device such as a field-effect-transistor (FET) having a metal gate with improved performance. A metal gate is formed on a substrate in the semiconductor device. Further processing can result in unwanted oxidation in the metal that forms the metal gate. A reducing agent can be used to de-oxidize the metal that forms the metal gate, leaving a substantially non-oxidized surface.
Abstract:
Integrated circuits and methods of forming integrated circuits are provided herein. In an embodiment, a method of forming an integrated circuit includes providing a base substrate having an embedded electrical contact disposed therein. An interlayer dielectric is formed overlying the base substrate, and a recess is etched through the interlayer dielectric over the embedded electrical contact. A protecting liner is formed in the recess and over an exposed surface of the embedded electrical contact in the recess. The protecting liner includes at least two liner layers that have materially different etch rates in different etchants. A portion of the protecting liner is removed over the surface of the embedded electrical contact to again expose the surface of the embedded electrical contact in the recess. An embedded electrical interconnect is formed in the recess. The embedded electrical interconnect overlies the protecting liner on sides of the recess.
Abstract:
A method of forming a metalized contact in MOL is provided. Embodiments include forming a TT through an ILD down to a S/D region; forming a SiOC, SiCN, or SiON layer on side surfaces of the TT; performing a GCIB vertical etching at a 0° angle; implanting Si into the TT by an angled PAI; removing a portion of the TT by Ar sputtering and a remote plasma assisted dry etch process; forming NiSi on the S/D region at the bottom of the TT; and filling the TT with contact metal over the NiSi.
Abstract:
Aspects of the present invention relate to approaches for preventing contact encroachment in a semiconductor device. A first portion of a contact trench can be etched partway to a source-drain region of the semiconductor device. A dielectric liner can be deposited in this trench. A second etch can be performed on the lined trench to etch the contact trench channel the remainder of the way to the source-drain region. This leaves a portion of the dielectric liner remaining in the trench (e.g., covering the vertical walls of the trench) after the second etch.
Abstract:
In one illustrative embodiment, the present disclosure is directed to a method involving fabricating an NMOS transistor device having a substrate and a gate structure disposed over the substrate, the substrate including a channel region underlying, at least partially, the gate structure, the fabricating including: forming a source and drain cavity in the substrate; with an in situ doped semiconductor material, epitaxially growing a source and drain region within the source and drain cavity; performing an amorphization ion implantation process by implanting an amorphization ion material into the source and drain region; forming a capping material layer above the NMOS transistor device; with the capping material layer in position, performing a stress forming anneal process to thereby form stacking faults in the source and drain region; and removing the capping material layer.
Abstract:
Aspects of the present invention relate to approaches for preventing contact encroachment in a semiconductor device. A first portion of a contact trench can be etched partway to a source-drain region of the semiconductor device. A dielectric liner can be deposited in this trench. A second etch can be performed on the lined trench to etch the contact trench channel the remainder of the way to the source-drain region. This leaves a portion of the dielectric liner remaining in the trench (e.g., covering the vertical walls of the trench) after the second etch.
Abstract:
Integrated circuits and methods of forming integrated circuits are provided herein. In an embodiment, a method of forming an integrated circuit includes providing a base substrate having an embedded electrical contact disposed therein. An interlayer dielectric is formed overlying the base substrate, and a recess is etched through the interlayer dielectric over the embedded electrical contact. A protecting liner is formed in the recess and over an exposed surface of the embedded electrical contact in the recess. The protecting liner includes at least two liner layers that have materially different etch rates in different etchants. A portion of the protecting liner is removed over the surface of the embedded electrical contact to again expose the surface of the embedded electrical contact in the recess. An embedded electrical interconnect is formed in the recess. The embedded electrical interconnect overlies the protecting liner on sides of the recess.
Abstract:
Aspects of the present invention relate to approaches for forming a semiconductor device such as a field-effect-transistor (FET) having a metal gate with improved performance. A metal gate is formed on a substrate in the semiconductor device. Further processing can result in unwanted oxidation in the metal that forms the metal gate. A reducing agent can be used to de-oxidize the metal that forms the metal gate, leaving a substantially non-oxidized surface.
Abstract:
Methods for forming a trench silicide without gouging the silicon source/drain regions and the resulting devices are disclosed. Embodiments include forming first and second dummy gates, each with spacers at opposite sides thereof, on a substrate; forming eSiGe source/drain regions at opposite sides of the first dummy gate; forming raised source/drain regions at opposite sides of the second dummy gate; forming a silicon cap on each of the eSiGe and raised source/drain regions; forming an ILD over and between the first and second dummy gates; replacing the first and second dummy gates with first and second HKMG, respectively; forming a contact trench through the ILD into the silicon cap over each of the eSiGe and raised source/drain regions; and forming a silicide over the eSiGe and raised source/drain regions.