Abstract:
Integrated circuits and methods of forming integrated circuits are provided herein. In an embodiment, a method of forming an integrated circuit includes providing a base substrate having an embedded electrical contact disposed therein. An interlayer dielectric is formed overlying the base substrate, and a recess is etched through the interlayer dielectric over the embedded electrical contact. A protecting liner is formed in the recess and over an exposed surface of the embedded electrical contact in the recess. The protecting liner includes at least two liner layers that have materially different etch rates in different etchants. A portion of the protecting liner is removed over the surface of the embedded electrical contact to again expose the surface of the embedded electrical contact in the recess. An embedded electrical interconnect is formed in the recess. The embedded electrical interconnect overlies the protecting liner on sides of the recess.
Abstract:
Fin-type transistor fabrication methods and structures are provided having one or more nitrided conformal layers, to improve reliability of the semiconductor device. The method includes, for example, providing at least one material layer disposed, in part, conformally over a fin extending above a substrate, the material layer(s) including a gate dielectric layer; and performing a conformal nitridation process over an exposed surface of the material layer(s), the conformal nitridation process forming an exposed, conformal nitrided surface.
Abstract:
Methods of fabricating transistors having raised active region(s) with at least partially angled upper surfaces are provided. The method includes, for instance: providing a gate structure disposed over a substrate, the gate structure including a conformal spacer layer; forming a raised active region adjoining a sidewall of the conformal spacer layer; providing a protective material over the raised active region; selectively etching-back the sidewall of the conformal spacer layer, exposing a side portion of the raised active region below the protective material; and etching the exposed side portion of the raised active region to partially undercut the protective material, wherein the etching facilitates defining, at least in part, an at least partially angled upper surface of the raised active region of the transistor.
Abstract:
Fin-type transistor fabrication methods and structures are provided having one or more nitrided conformal layers, to improve reliability of the semiconductor device. The method includes, for example, providing at least one material layer disposed, in part, conformally over a fin extending above a substrate, the material layer(s) including a gate dielectric layer; and performing a conformal nitridation process over an exposed surface of the material layer(s), the conformal nitridation process forming an exposed, conformal nitrided surface.
Abstract:
A method includes forming a gate structure by growing an interfacial layer on a substrate, depositing a High K layer on the interfacial layer, depositing a TiN Cap on the High K layer and forming a thin barrier layer on the TiN Cap. The gate structure is annealed.
Abstract:
Integrated circuits and methods for fabricating integrated circuits are provided. In one example, a method for fabricating an integrated circuit includes etching an enhanced high-aspect-ratio process (eHARP) oxide fill that is disposed in an STI trench between two adjacent fins to form a recessed eHARP oxide fill. The two adjacent fins extend from a bulk semiconductor substrate. A silicon layer is formed overlying the recessed eHARP oxide fill. The silicon layer is converted to a thermal oxide layer to further fill the STI trench with oxide material.
Abstract:
Integrated circuits and methods for fabricating integrated circuits are provided. In one example, a method for fabricating an integrated circuit includes etching an enhanced high-aspect-ratio process (eHARP) oxide fill that is disposed in an STI trench between two adjacent fins to form a recessed eHARP oxide fill. The two adjacent fins extend from a bulk semiconductor substrate. A silicon layer is formed overlying the recessed eHARP oxide fill. The silicon layer is converted to a thermal oxide layer to further fill the STI trench with oxide material.
Abstract:
Integrated circuits and methods of forming integrated circuits are provided herein. In an embodiment, a method of forming an integrated circuit includes providing a base substrate having an embedded electrical contact disposed therein. An interlayer dielectric is formed overlying the base substrate, and a recess is etched through the interlayer dielectric over the embedded electrical contact. A protecting liner is formed in the recess and over an exposed surface of the embedded electrical contact in the recess. The protecting liner includes at least two liner layers that have materially different etch rates in different etchants. A portion of the protecting liner is removed over the surface of the embedded electrical contact to again expose the surface of the embedded electrical contact in the recess. An embedded electrical interconnect is formed in the recess. The embedded electrical interconnect overlies the protecting liner on sides of the recess.
Abstract:
A method of fabricating an integrated circuit includes the steps of providing a semiconductor substrate having formed thereon a sacrificial silicon oxide layer, an interlayer dielectric layer formed over the sacrificial silicon oxide layer, and a dummy gate structure formed over the sacrificial silicon oxide layer and within the interlayer dielectric layer, removing the dummy gate structure to form an opening within the interlayer dielectric layer, and removing the sacrificial silicon oxide layer within the opening to expose the semiconductor substrate within the opening. The method further includes the steps of thermally forming an oxide layer on the exposed semiconductor substrate within the opening, subjecting the thermally formed oxide layer to a decoupled plasma oxidation treatment, and etching the thermally formed oxide layer using a self-saturated wet etch chemistry. Still further, the method includes depositing a high-k dielectric over the thermally formed oxide layer within the opening.