Abstract:
A tri-axis accelerometer includes a proof mass, at least four anchor points arranged in at least two opposite pairs, a first pair of anchor points being arranged opposite one another along a first axis, a second pair of anchor points being arranged opposite one another along a second axis, the first axis and the second axis being perpendicular to one another, and at least four spring units to connect the proof mass to the at least four anchor points, the spring units each including a pair of identical springs, each spring including a sensing unit.
Abstract:
A device with multiple encapsulated functional layers, includes a substrate, a first functional layer positioned above a top surface of the substrate, the functional layer including a first device portion, a first encapsulating layer encapsulating the first functional layer, a second functional layer positioned above the first encapsulating layer, the second functional layer including a second device portion, and a second encapsulating layer encapsulating the second functional layer.
Abstract:
A tri-axis accelerometer includes a proof mass, at least four anchor points arranged in at least two opposite pairs, a first pair of anchor points being arranged opposite one another along a first axis, a second pair of anchor points being arranged opposite one another along a second axis, the first axis and the second axis being perpendicular to one another, and at least four spring units to connect the proof mass to the at least four anchor points, the spring units each including a pair of identical springs, each spring including a sensing unit.
Abstract:
In one embodiment, a method of forming an insulating spacer includes providing a base layer, providing an intermediate layer above an upper surface of the base layer, etching a first trench in the intermediate layer, depositing a first insulating material portion within the first trench, depositing a second insulating material portion above an upper surface of the intermediate layer, forming an upper layer above an upper surface of the second insulating material portion, etching a second trench in the upper layer, and depositing a third insulating material portion within the second trench and on the upper surface of the second insulating material portion.
Abstract:
A method of etching a device in one embodiment includes providing a silicon carbide substrate, forming a silicon nitride layer on a surface of the silicon carbide substrate, forming a silicon carbide layer on a surface of the silicon nitride layer, forming a silicon dioxide layer on a surface of the silicon carbide layer, forming a photoresist mask on a surface of the silicon dioxide layer, and etching the silicon dioxide layer through the photoresist mask.
Abstract:
A method for fabricating a pair of large surface area planar electrodes. The method includes forming a first template above a first substrate, the first template having a first plurality of pores, coating the first plurality of pores of the first template with a first layer of conducting material to form a first electrode, placing the first plurality of pores of the first electrode in proximity to a second electrode, thereby forming a gap between the first plurality of pores and the second electrode, and filling the gap with an electrolyte material.
Abstract:
A tri-axis accelerometer includes a proof mass, at least four anchor points arranged in at least two opposite pairs, a first pair of anchor points being arranged opposite one another along a first axis, a second pair of anchor points being arranged opposite one another along a second axis, the first axis and the second axis being perpendicular to one another, and at least four spring units to connect the proof mass to the at least four anchor points, the spring units each including a pair of identical springs, each spring including a sensing unit.
Abstract:
A method of forming a device with multiple encapsulated pressures is disclosed herein. In accordance with one embodiment of the present invention, there is provided a method of forming a device with multiple encapsulated pressures, including providing a substrate, forming a functional layer on top of a surface of the substrate, the functional layer including a first device portion at a first location, and a second device portion at a second location adjacent to the first location, encapsulating the functional layer, forming at least one diffusion resistant layer above the encapsulated functional layer at a location above the first location and not above the second location, modifying an environment adjacent the at least one diffusion resistant layer, and diffusing a gas into the second location as a result of the modified environment.
Abstract:
A mechanical structure is disposed in a chamber, at least a portion of which is defined by the encapsulation structure. A first method provides a channel cap having at least one preform portion disposed over or in at least a portion of an anti-stiction channel to seal the anti-stiction channel, at least in part. A second method provides a channel cap having at least one portion disposed over or in at least a portion of an anti-stiction channel to seal the anti-stiction channel, at least in part. The at least one portion is fabricated apart from the electromechanical device and thereafter affixed to the electromechanical device. A third method provides a channel cap having at least one portion disposed over or in at least a portion of the anti-stiction channel to seal an anti-stiction channel, at least in part. The at least one portion may comprise a wire ball, a stud, metal foil or a solder preform. A device includes a substrate, an encapsulation structure and a mechanical structure. An anti-stiction layer is disposed on at least a portion of the mechanical structure. An anti-stiction channel is formed in at least one of the substrate and the encapsulation structure. A cap has at least one preform portion disposed over or in at least a portion of the anti-stiction channel to seal the anti-stiction channel, at least in part.
Abstract:
There are many inventions described and illustrated herein. In one aspect, the present invention is directed to a MEMS device, and technique of fabricating or manufacturing a MEMS device, having mechanical structures encapsulated in a chamber prior to final packaging. An embodiment further includes location of a piezoelectric material as part of a semiconductor sensing structure. The semiconductor sensing structure, in conjunction with the piezoelectric material, can be used as a sensing device to provide an output signal associated with a sensed event.