Abstract:
According to an example, a microfluidic apparatus may include a fluid slot, a foyer in fluid communication with the fluid slot via a channel having a relatively smaller width than the foyer, a sensor to detect a presence of a particle of interest in a fluid passing through the channel, a nozzle in fluid communication with the foyer, and an actuator positioned in line with the nozzle. The microfluidic apparatus may also include a controller to receive information from the sensor, determine, from the received information, whether a particle of interest has passed through the channel, and control the actuator to expel fluid in the foyer through the nozzle based upon the determination.
Abstract:
Examples herein provide a device. The device includes a sample delivery component, which includes: a reagent chamber to contain at least one reagent; a sample chamber to contain a fluid sample; and a delivery channel extending from the reagent chamber and in fluid communication with the sample chamber and an output port, wherein the delivery channel is conducive to mixing the at least one reagent and the fluid sample to form a mixture before the mixture reaches the output port and be discharged therefrom. The device includes a testing cassette detachable from the delivery component, which includes: an input port in fluid communication with a microfluidic reservoir, the input port to receive the discharged fluid sample from the output port; and a micro-fabricated integrated sensor in a microfluidic channel extending from the microfluidic reservoir.
Abstract:
A microfluidic sensing device comprises a channel and an impedance sensor within the channel. The impedance sensor comprises a local ground and an electrode within the channel. The local ground and the electrode are to form an electric field region that is elongated along the channel.
Abstract:
According to an example, a microfluidic apparatus may include a fluid slot and a foyer that is in fluid communication with the fluid slot via a channel having a relatively smaller width than the foyer. The microfluidic apparatus may also include an electrical sensor to measure a change in an electrical field caused by a particle of interest in a fluid passing through the channel from the fluid slot to the foyer, an actuator to apply pressure onto fluid contained in the foyer, and a controller to receive the measured change in the electrical field from the electrical sensor, determine, from the received change in the electrical field, an electrical signature of the particle of interest, and control the actuator to control movement of the particle of interest based upon the determined electrical signature of the particle of interest.
Abstract:
A controller outputs control signals controlling a frequency source to selectively apply different nonzero frequencies of alternating current at different times to an electric sensor within a microfluidic channel.
Abstract:
According to an example, a microfluidic apparatus may include a channel, a foyer, in which the foyer is in fluid communication with the channel and in which the channel has a smaller width than the foyer, a sensor to sense a property of a fluid passing through the channel, a nozzle in fluid communication with the foyer, and an actuator positioned in line with the nozzle. The microfluidic apparatus may also include a controller to determine whether the sensed property of the fluid meets a predetermined condition and to perform a predefined action in response to the sensed property of the fluid meeting the predetermined condition.
Abstract:
Examples herein provide a method. The method includes applying an electrical potential difference over a blood sample in a testing cassette of a microfluidic device, the cassette including a microfluidic channel through which the blood sample flows. The method includes measuring, over a duration of time, an electrical signal passing through the blood sample as the blood sample flows from a first end and coagulates at a second end of the microfluidic channel to obtain a measurement function as a function of time. The method also includes correlating the measurement function to a characteristic of the blood sample.
Abstract:
A fluid testing system comprises controlling hardware that serves to control an electric sensor on a fluid testing cassette. In one implementation, the controlling hardware is part of a cassette interface. In another implementation, the controlling hardware is part of the portable electronic device. In one implementation, the fluid testing system applies two different frequencies of alternating current are applied to two different electric sensors.
Abstract:
An apparatus includes a microfluidic passage, a chamber, an inlet connecting the microfluidic passage to the chamber, a sensor proximate the inlet to sense fluid within the inlet, a first nozzle, a first fluid driver to move fluid through the first nozzle to draw fluid across the inlet, a second nozzle, a second fluid driver to move fluid through the second nozzle to draw fluid across the inlet and a controller. The controller sequentially actuates the first fluid driver and the second fluid driver.