Abstract:
In an example implementation, a touch-sensitive illuminating display includes a transparent flexible touch layer, a transparent top conductive layer adjacent the flexible touch layer, a bottom conductive layer, and an electroluminescent layer and variable-thickness dielectric layer sandwiched between the top and bottom conductive layers. Pressure against the flexible touch layer is to reduce the dielectric layer thickness and bring the top and bottom conductive layers closer together, causing the electroluminescent layer to emit light where the pressure is applied.
Abstract:
An annealing device may include an array of thermal heaters, each thermal heater comprising a resistive element formed into a cavity and wherein each of the thermal heaters within the array of thermal heaters are selectively activated to anneal an annealable material deposited into the cavities.
Abstract:
In an example implementation, a conductive trace printing system includes a conductive trace application station to apply a conductive trace onto a media substrate. The printing system also includes a conductive trace enhancement station to expose the conductive trace to an electroless metal plating solution to generate an enhanced conductive trace.
Abstract:
A surface enhanced luminescence (SEL) sensor may include a substrate and nano fingers projecting from the substrate. The nano fingers may include a nano finger extending along an axis. The nano finger may include a plasmonically active cap and a pillar supporting the plasmonically active cap. The pillar may have an asymmetric material composition with respect to the axis.
Abstract:
A memory cell includes an input coupled to a read line, an output coupled to a circuit ground, a bi-polar memristor, and at least one address switch coupled to an address line to select the memory cell. A memory includes the bi-polar memristor and a one-way current conducting device, wherein the one-way current conducting device is positioned between the memristor cell output and the circuit ground, or between the read line and the memristor cell input.
Abstract:
In an example, a device for sensing a property of a fluid may include an ion-sensitive field effect transistor (ISFET) having a gate, a source, and a drain. The device may also include a first metal element in contact with the gate and a switching layer in contact with the first metal layer. A resistance state of the switching layer is to be modified through application of an electrical field of at least a predefined strength through the switching layer and is to be retained in the switching layer following removal of the electrical field. The device may also include a metal plate in contact with the switching layer, in which the metal plate is to directly contact the fluid for which the property is to be sensed.
Abstract:
The present subject matter relates to an integrated circuit. The integrated circuit includes a first metal layer and a second metal layer capacitively coupled to the first metal layer through a dielectric layer. Further, the second metal layer includes an electron leakage path to provide for leakage of charge from the second metal layer in a predetermined leak time period.
Abstract:
Examples of fluid ejection apparatuses and methods for making fluid ejection apparatuses are described. An example method may include forming a fluid feed slot in a bulk layer of a substrate, forming a plurality of ink feed channels in at least an epitaxial layer of the substrate, each of the ink feed channels fluidically coupled to the fluid feed slot, and forming a plurality of drop generators over the substrate such that the epitaxial layer of the substrate is between the plurality of drop generators and the bulk layer and such that the each of the drop generators is fluidically coupled to the fluid feed slot by at least one of the ink feed channels.
Abstract:
According to an example, an apparatus may include an agent delivery device to selectively deliver an agent onto a layer of build material particles. The apparatus may also include an energy source to apply energy onto the layer of build material particles to selectively fuse the build material particles in the layer based upon the locations at which the agent was delivered and a chamber formed of a plurality of walls, in which the agent delivery device and the energy source are housed inside the chamber. The apparatus may further include a vapor source to supply vapor into the chamber to wet the build material particles inside the chamber.
Abstract:
A fluid reservoir may include a number of metal traces along a wall of the fluid reservoir, and a number of fuse circuits along a length of the metal traces. Each of the fuse circuits may include a fuse along a length of a respective metal trace, and a number of parasitic resistive elements in parallel to the fuse. The parasitic resistive elements reduce current flow through the fuse in the presence of a fluid contained within the fluid reservoir.