Abstract:
A method of estimating transmission torque of a vehicle dry clutch may suitably estimate a variation in the characteristics of transmission torque relative to the actuator stroke of a dry clutch even during the driving of a vehicle, so that the dry clutch is more suitably controlled. In the method of estimating transmission torque of a dry clutch, a clutch is released so that a slip of the clutch occurs. If the slip of the clutch has occurred, the slip of the clutch is uniformly maintained. If the slip of the clutch is uniformly maintained, a relationship between a stroke of an actuator of the clutch and transmission torque of the clutch is determined from a relationship between the stroke of the actuator and torque of an engine in the uniformly maintained slip state.
Abstract:
A method and an apparatus for controlling a clutch of a vehicle include determining whether a vehicle is moving under a condition in which a gearshift is coupled to the clutch. A clutch torque is learned in which the clutch is maintained in a micro-slip state by decreasing a target clutch torque for a corresponding gear level when it is determined that the vehicle is moving under the condition in which the gearshift is coupled to the clutch. Learning reliability is calculated by reflecting a difference between an engine torque and clutch torque. The clutch is maintained in the micro-slip state for the clutch torque learning or converting the clutch into a lock-up state, depending on a learning reliability level.
Abstract:
A touch point correction method includes determining respective temperatures of a first pressure plate, a second pressure plate, and a center plate and measuring an average temperature of the determined temperatures, determining rotational inertia based on the measured average temperature, determining a touch point correction amount based on the rotational inertia and engine speed of a vehicle, and correcting a touch point of a relevant clutch using the determined touch point correction amount.
Abstract:
A method of adjusting the transmission torque characteristics of a dry clutch may include carrying out adjustment based on learning using a T-S curve that indicates the relationship of the transmission torque to the actuator stroke of the dry clutch, a section of the T-S curve in which inclinations change discontinuously is removed, so that the controllability over the dry clutch is reliable and the feeling of shifting can be improved.
Abstract:
A method of correcting clutch characteristics of a vehicle may include determining whether or not a difference in temperature between a surface and a core of a driving clutch exceeds a reference value, and correcting a torque-stroke (T-S) curve if it is determined that the difference in temperature exceeds the reference value. The correcting of the T-S curve may include moving the T-S curve from a currently selected position in a direction in response to a rise in temperature.
Abstract:
A touch point adjusting method for a double clutch transmission, may include determining amounts of individual adjustment of first and second pressure plates and a center plate depending on temperature, determining an amount of final adjustment of a touch point in consideration of the amounts of the individual adjustment determined at the process of determining the amounts of the individual adjustment, and adjusting the touch point of a corresponding clutch based on the amount of the final adjustment of the touch point determined at the process of determining the amount of the final adjustment of the touch point.
Abstract:
A method for learning a characteristic of a clutch in a DCT vehicle includes a shifting condition determination step for determining whether a shifting condition is satisfied, a synchronization step for partly reducing torque of a disengagement-side clutch in order to synchronize an engine speed with a speed of an engagement-side input shaft when shifting is started when the shifting condition is satisfied, a clutch release determination step for determining whether a slip amount of a disengagement-side clutch exceeds a reference slip amount, and a disengagement-side clutch learning step for updating clutch torque on a characteristic curve of the disengagement-side clutch using the torque of the disengagement-side clutch that is controlled to allow the slip amount of the disengagement-side clutch to exceed the reference slip amount in the clutch release determination step, and for learning the updated clutch torque.
Abstract:
The present disclosure provides a control method and a control system of a dual clutch transmission for a vehicle. The method includes: a pre-engagement-determining step of determining whether any one of gears has been pre-engaged, by means of a controller; a clutch-moving step of generating an oscillation signal to the release input shaft and increasing a clutch position value of the release input shaft; and a signal-determining step of determining whether the oscillation signal generated to the release input shaft is sensed at the engagement input shaft.
Abstract:
A clutch in a vehicle with DCT having an ISG function is controlled for an engine speed to be decreased rapidly when the engine enters into the ISG so that a ring gear of an engine and a gear of a starter motor are meshed more rapidly when a vehicle restarts, to thereby prevent a response delay when restarting the vehicle.
Abstract:
The present disclosure provides a clutch control method of a hybrid vehicle of the including an entering condition determining step in which a controller determines whether shifting is being performed during regenerative braking; an error calculating step in which the controller calculates a torque error by subtracting observer torque, which is clutch transfer torque calculated by a clutch torque estimator receiving transmission input torque and motor speed, from map torque, which is clutch transfer torque calculated based on a clutch transfer torque map for clutch actuator strokes learned in advance, when shifting is being performed during regenerative braking; a correcting step in which the controller corrects the clutch transfer torque map for the clutch actuator strokes using the torque error calculated in the error calculating step; and a clutch control step in which the controller controls a clutch using the map corrected in the correcting step.