Abstract:
Self-aligned gate endcap (SAGE) architectures having local interconnects, and methods of fabricating SAGE architectures having local interconnects, are described. In an example, an integrated circuit structure includes a first gate structure over a first semiconductor fin, and a second gate structure over a second semiconductor fin. A gate endcap isolation structure is between the first and second semiconductor fins and laterally between and in contact with the first and second gate structures. A gate plug is over the gate endcap isolation structure and laterally between and in contact with the first and second gate structures. A local gate interconnect is between the gate plug and the gate endcap isolation structure, the local gate interconnect in contact with the first and second gate structures.
Abstract:
Dual self-aligned gate endcap (SAGE) architectures, and methods of fabricating dual self-aligned gate endcap (SAGE) architectures, are described. In an example, an integrated circuit structure includes a first semiconductor fin having a cut along a length of the first semiconductor fin. A second semiconductor fin is parallel with the first semiconductor fin. A first gate endcap isolation structure is between the first semiconductor fin and the second semiconductor fin. A second gate endcap isolation structure is in a location of the cut along the length of the first semiconductor fin.
Abstract:
Dual self-aligned gate endcap (SAGE) architectures, and methods of fabricating dual self-aligned gate endcap (SAGE) architectures, are described. In an example, an integrated circuit structure includes a first semiconductor fin having a cut along a length of the first semiconductor fin. A second semiconductor fin is parallel with the first semiconductor fin. A first gate endcap isolation structure is between the first semiconductor fin and the second semiconductor fin. A second gate endcap isolation structure is in a location of the cut along the length of the first semiconductor fin.
Abstract:
Embodiments of the present disclosure describe techniques and configurations to reduce transistor gate short defects. In one embodiment, a method includes forming a plurality of lines, wherein individual lines of the plurality of lines comprise a gate electrode material, depositing an electrically insulative material to fill regions between the individual lines and subsequent to depositing the electrically insulative material, removing a portion of at least one of the individual lines to isolate gate electrode material of a first transistor device from gate electrode material of a second transistor device. Other embodiments may be described and/or claimed.
Abstract:
Unidirectional self-aligned gate endcap (SAGE) architectures with gate-orthogonal walls, and methods of fabricating unidirectional self-aligned gate endcap (SAGE) architectures with gate-orthogonal walls, are described. In an example, integrated circuit structure includes a first semiconductor fin having a cut along a length of the first semiconductor fin. A second semiconductor fin has a cut along a length of the second semiconductor fin. A gate endcap isolation structure is between the first semiconductor fin and the second semiconductor fin. The gate endcap isolation structure has a substantially uniform width along the lengths of the first and second semiconductor fins.
Abstract:
Self-aligned gate endcap (SAGE) architectures having gate endcap plugs or contact endcap plugs, or both gate endcap plugs and contact endcap plugs, and methods of fabricating SAGE architectures having such endcap plugs, are described. In an example, a first gate structure is over a first of a plurality of semiconductor fins. A second gate structure is over a second of the plurality of semiconductor fins. A first gate endcap isolation structure is laterally between and in contact with the first gate structure and the second gate structure and has an uppermost surface co-planar with an uppermost surface of the first gate structure and the second gate structure. A second gate endcap isolation structure is laterally between and in contact with first and second lateral portions of the first gate structure and has an uppermost surface below an uppermost surface of the first gate structure.
Abstract:
Embodiments of the present disclosure describe techniques and configurations to reduce transistor gate short defects. In one embodiment, a method includes forming a plurality of lines, wherein individual lines of the plurality of lines comprise a gate electrode material, depositing an electrically insulative material to fill regions between the individual lines and subsequent to depositing the electrically insulative material, removing a portion of at least one of the individual lines to isolate gate electrode material of a first transistor device from gate electrode material of a second transistor device. Other embodiments may be described and/or claimed.
Abstract:
An apparatus includes a non-planar semiconductor body; and a contact for the semiconductor body. The contact includes an epitaxial material that is formed on and contacts the semiconductor body. The contact includes a second material that is formed on and contacts the epitaxial material; and the second material at least partially conforms to an undercut of the epitaxial material.
Abstract:
An embodiment includes a metal interconnect structure, comprising: a dielectric layer on a substrate; an opening in the dielectric layer, wherein the opening has opening sidewalls and exposes a conductive region of at least one of the substrate and an additional interconnect structure; a first atomic layer deposition (ALD) layer on the conductive region and the opening sidewalls; a second ALD layer on a portion of the first ALD layer, and a third ALD layer within the opening and on the first ALD layer. Other embodiments are described herein.
Abstract:
Embodiments of the present disclosure describe techniques and configurations to reduce transistor gate short defects. In one embodiment, a method includes forming a plurality of lines, wherein individual lines of the plurality of lines comprise a gate electrode material, depositing an electrically insulative material to fill regions between the individual lines and subsequent to depositing the electrically insulative material, removing a portion of at least one of the individual lines to isolate gate electrode material of a first transistor device from gate electrode material of a second transistor device. Other embodiments may be described and/or claimed.