Abstract:
An imprinting apparatus comprises a first carrier for carrying a flexible stamp having an imprinting pattern and a second carrier movable relative to the first carrier and configured to carry a substrate having a resist layer. The second carrier comprises a chuck and an interface plate over the chuck, wherein the interface plate comprises an array of openings for receiving already-imprinted areas of one side of a substrate while an opposite side of the substrate is to be imprinted. The chuck comprises a fluid passage arrangement for coupling to the openings of the array.
Abstract:
An imprinting apparatus comprises a first carrier for carrying a flexible stamp and a second carrier movable relative to the first carrier and configured to carry a substrate having a resist layer. The first and second carriers are arranged such that the flexible stamp can be made to contact the substrate. The second carrier comprises a main frame which may be moved (relative to a reference frame) in a Z axis direction by a main actuator, and a chuck with a set of three chuck actuators, each with a stroke smaller than the stroke of the main actuator, for translating a portion of the chuck relative to the main frame in the Z-axis direction. The Z axis movement of the chuck is divided into two stages, with separate long stroke and short stroke drivers. This enables a very stiff support to be created with precise imprint gap control.
Abstract:
The present invention relates to a light emitting device (100) comprising: a substrate (102); a light emitting diode structure (106) arranged on the substrate (102), the diode structure (106) comprising a first semiconducting layer (108), an active region (110) and a second semiconducting layer (112), wherein a light output surface of the diode structure comprises a plurality of protruding surface structures (104) each having a peak height, a sidewall slope (122) and orientation in relation to the substrate, the plurality of protruding structures (104) comprising a first set and a second set of protruding surface structures, the first set and second set of protruding surface structures differing by at least one of the peak height, sidewall slope and orientation in relation to the substrate. The invention also relates to a method for manufacturing a light emitting device where the protruding surface structures are formed by imprint lithography to form a three-dimensional pattern and subsequent etching.
Abstract:
There is provided an illumination device (100) comprising an energy source (102) for exciting a photon emitter; a first wavelength conversion layer (104) and a second wavelength conversion layer (106). At least one of the first and second wavelength conversion layer comprises a periodic plasmonic antenna array comprising a plurality of individual antenna elements (108). The wavelength converting medium in the wavelength conversion layer in which the antenna array is arranged comprises photon emitters arranged in close proximity of the plasmonic antenna array such that at least a portion of photons emitted from the wavelength conversion layer are emitted by a coupled system comprising the photon emitter and the plasmonic antenna array. The plasmonic antenna array is configured to support plasmonic-photonic lattice resonances at a frequency range corresponding to the wavelength range of the photon emitter in the layer in which the plasmonic antenna array is arranged, such that light emitted from the plasmonic antenna array has an anisotropic angle distribution.
Abstract:
Embodiments of the invention include a semiconductor light emitting device for emitting a first light at a first wavelength and a wavelength conversion medium arranged to convert at least part of the first light into a second light at a second wavelength. The wavelength conversion medium is disposed between a periodic antenna array and the semiconductor light emitting device. The periodic antenna array includes a plurality of antennas. The periodic antenna array supports surface lattice resonances arising from diffractive coupling of localized surface plasmon resonances in at least one of the antennas.
Abstract:
There is provided an illumination device (100) comprising an energy source (102) for exciting a photon emitter; a first wavelength conversion layer (104) and a second wavelength conversion layer (106). At least one of the first and second wavelength conversion layer comprises a periodic plasmonic antenna array comprising a plurality of individual antenna elements (108). The wavelength converting medium in the wavelength conversion layer in which the antenna array is arranged comprises photon emitters arranged in close proximity of the plasmonic antenna array such that at least a portion of photons emitted from the wavelength conversion layer are emitted by a coupled system comprising the photon emitter and the plasmonic antenna array. The plasmonic antenna array is configured to support plasmonic-photonic lattice resonances at a frequency range corresponding to the wavelength range of the photon emitter in the layer in which the plasmonic antenna array is arranged, such that light emitted from the plasmonic antenna array has an anisotropic angle distribution.
Abstract:
An imprinting apparatus comprises a first carrier for carrying a flexible stamp and a second carrier movable relative to the first carrier and configured to carry a substrate having a resist layer. The second carrier comprises a chuck and a set of chuck actuators for translating a portion of the chuck in a Z-axis direction. Each chuck actuator comprises an actuator output and a lever arrangement between the actuator output and a chuck drive member. The lever arrangement enables an increase in positioning accuracy and increased stiffness, compared to the direct control of position using the actuator output.
Abstract:
Disclosed are imprinting ink compositions for use in imprinting techniques such as SCIL. The imprinting ink compositions comprise TMO nanoparticles stabilized by selected polymerization inhibitors that allow for the formation of a stable imprinting ink composition in which polymerization of the TMO nanoparticles is effectively suppressed and from which high refractive index patterned layers can be formed. Imprinting methods using such imprinting ink compositions, optical devices including patterned layers formed from such imprinting ink compositions and lighting devices, optical sensors and photovoltaic devices including such optical elements are also disclosed.
Abstract:
A method of transferring a flexible layer to a substrate makes use of a partial bulge in the flexible layer, which does not make contact with the substrate. The partial bulge advances to the location of an alignment marker on the substrate. When alignment adjustments are needed, they are made with the partial bulge in place so that more reproducible positioning is possible when fully advancing the flexible layer against the substrate.
Abstract:
The invention relates to an organic light-emitting device (OLED) comprising at least: a first electrode; a second electrode; an organic light emissive layer arranged between said first electrode and said second electrode; and an organic charge transport layer arranged between said first electrode and said emissive layer, wherein i) the charge transport layer is patterned or provided with a periodic surface structure on a surface of the charge transport layer facing the emissive layer, and/or ii) an alignment layer which allows for charge transport to the emissive layer is provided between said charge transport layer and said emissive layer, which alignment layer promotes alignment of the optical dipoles of molecules of said light emissive layer towards a common preferred direction of the molecular axes. The use of the patterned or structured charge transport layer and/or the alignment layer provides improved light out coupling from the OLED layer stack, i.e. increased external quantum efficiency.