摘要:
A sensor which has high measuring sensitivity and is excellent in response is provided by forming a porous film in a sensitive section of a field-effect transistor. It comprises a porous body, which is formed on a sensitive section (here, a gate insulating film) of the field-effect transistor and has cylindrical pores which are formed almost perpendicularly to a substrate, and the field-effect transistor. It uses as a porous film a porous film which is made of a semiconductor material whose main component (except oxygen) is silicon, germanium, or a composite of silicon and germanium, or a porous film made of an insulation material whose main component is silicon oxide, which has pores perpendicular to the substrate.
摘要:
A sensor which has high measuring sensitivity and is excellent in response is provided by forming a porous film in a sensitive section of a field-effect transistor. It comprises a porous body, which is formed on a sensitive section (here, a gate insulating film) of the field-effect transistor and has cylindrical pores which are formed almost perpendicularly to a substrate, and the field-effect transistor. It uses as a porous film a porous film which is made of a semiconductor material whose main component (except oxygen) is silicon, germanium, or a composite of silicon and germanium, or a porous film made of an insulation material whose main component is silicon oxide, which has pores perpendicular to the substrate.
摘要:
A sensor which has high measuring sensitivity and is excellent in response is provided by forming a porous film in a sensitive section of a field-effect transistor. It comprises a porous body, which is formed on a sensitive section (here, a gate insulating film) of the field-effect transistor and has cylindrical pores which are formed almost perpendicularly to a substrate, and the field-effect transistor. It uses as a porous film a porous film which is made of a semiconductor material whose main component (except oxygen) is silicon, germanium, or a composite of silicon and germanium, or a porous film made of an insulation material whose main component is silicon oxide, which has pores perpendicular to the substrate.
摘要:
A sensor which has high measuring sensitivity and is excellent in response is provided by forming a porous film in a sensitive section of a field-effect transistor. It comprises a porous body, which is formed on a sensitive section (here, a gate insulating film) of the field-effect transistor and has cylindrical pores which are formed almost perpendicularly to a substrate, and the field-effect transistor. It uses as a porous film a porous film which is made of a semiconductor material whose main component (except oxygen) is silicon, germanium, or a composite of silicon and germanium, or a porous film made of an insulation material whose main component is silicon oxide, which has pores perpendicular to the substrate.
摘要:
A semiconductor device has multi-layered interlayer insulating layers 3 formed on a semiconductor substrate 1, and wirings 4 formed in the interlayer insulating layers 3. The interlayer insulating layers 3 are composed of porous bodies having fine columnar pores and parent-material regions consisting mainly of silicon oxides surrounding the fine pores. The wirings 4 are composed of structures wherein columnar substances containing aluminum are dispersed in a base material containing silicon, or regions wherein an electrically conductive material is introduced in a portion of the porous bodies. The average diameter of the fine pores in the porous bodies is 1 nm or larger and 10 nm or smaller, and the average distance between the fine pores is 3 nm or larger and 15 nm or smaller. The fine pores in the porous bodies is formed perpendicularly, or substantially perpendicularly to the film surface on a semiconductor substrate 1.
摘要:
A semiconductor device array comprising highly densely arranged nano-size semiconductor devices is prepared by a simple method. The array comprises a porous body having cylinder-shaped pores formed by removing cylinder-shaped regions from a structure that includes a matrix member formed so as to contain silicon or germanium and the cylinder-shaped regions containing aluminum and dispersed in the matrix member, semiconductor regions formed in the pores, each having at least a p-n or p-i-n junction, and a pair or electrodes, arranged respectively on the top and at the bottom of the semiconductor regions. The semiconductor regions and the pair of electrodes form a plurality of semiconductor devices on a substrate.
摘要:
A method of manufacturing a dot pattern includes the steps of preparing a structured material composed of a plurality of columnar members containing a first component and a region containing a second component different from the first component surrounding the columnar members, with the structured material being formed by depositing the first component and the second component on a substrate, and removing the columnar members from the structured material to form a porous material having a columnar hole. In addition, a material is introduced into the columnar hole portions of the porous material to form a dot pattern, and the porous material is removed.
摘要:
A microcolumnar structured material having a desired material. The columnar structured material includes columnar members obtained by introducing a filler into columnar holes formed in a porous material. The porous material has the columnar holes formed by removing columnar substances from a structured material in which the columnar substances containing a first component are dispersed in a matrix member containing a second component capable of forming a eutectic with the first component. The matrix member may be removed. In the columnar structured material, the filler is a conductive material, and an electrode can be structured by electrically connecting the conductive materials in at least a part of a plurality of holes to a conductor.
摘要:
A method of manufacturing a dot pattern includes the steps of preparing a structured material composed of a plurality of columnar members containing a first component and a region containing a second component different from the first component surrounding the columnar members, with the structured material being formed by depositing the first component and the second component on a substrate, and removing the columnar members from the structured material to form a porous material having a columnar hole. In addition, a material is introduced into the columnar hole portions of the porous material to form a dot pattern, and the porous material is removed.
摘要:
A method of manufacturing a dot pattern includes the steps of preparing a structured material composed of a plurality of columnar members containing a first component and a region containing a second component different from the first component surrounding the columnar members, with the structured material being formed by depositing the first component and the second component on a substrate, and removing the columnar members from the structured material to form a porous material having a columnar hole. Additional steps include introducing a mask material into the columnar hole of the porous material to form a dot pattern, and removing the porous material.