摘要:
A Ti film is formed on a surface of a wafer W placed inside a chamber 31, while injecting a process gas containing TiCl4 gas into the chamber 31 from a showerhead 40 made of an Ni-containing material at least at a surface. The method includes performing formation of a Ti film on a predetermined number of wafers W while setting the showerhead 40 at a temperature of 300° C. or more and less than 450° C., and setting TiCl4 gas at a flow rate of 1 to 12 mL/min (sccm) or setting TiCl4 gas at a partial pressure of 0.1 to 2.5 Pa, and then, performing cleaning inside the chamber 31, while setting the showerhead 40 at a temperature of 200 to 300° C., and supplying ClF3 gas into the chamber 31.
摘要:
A Ti film is formed on a surface of a wafer W placed inside a chamber 31, while injecting a process gas containing TiCl4 gas into the chamber 31 from a showerhead 40 made of an Ni-containing material at least at a surface. The method includes performing formation of a Ti film on a predetermined number of wafers W while setting the showerhead 40 at a temperature of 300° C. or more and less than 450° C., and setting TiCl4 gas at a flow rate of 1 to 12 mL/min (sccm) or setting TiCl4 gas at a partial pressure of 0.1 to 2.5 Pa, and then, performing cleaning inside the chamber 31, while setting the showerhead 40 at a temperature of 200 to 300° C., and supplying ClF3 gas into the chamber 31.
摘要:
A cleaning process is performed on the surface of a nickel silicide film serving as an underlayer. Then, a Ti film is formed to have a film thickness of not less than 2 nm but less than 10 nm by CVD using a Ti compound gas. Then, the Ti film is nitrided. Then, a TiN film is formed on the Ti film thus nitrided, by CVD using a Ti compound gas and a gas containing N and H.
摘要:
A film formation method to form a predetermined thin film on a target substrate includes first and second steps alternately performed each at least once. The first step is arranged to generate first plasma within a process chamber that accommodates the substrate while supplying a compound gas containing a component of the thin film and a reducing gas into the process chamber. The second step is arranged to generate second plasma within the process chamber while supplying the reducing gas into the process chamber, subsequently to the first step.
摘要:
A film formation method to form a predetermined thin film on a target substrate includes first and second steps alternately performed each at least once. The first step is arranged to generate first plasma within a process chamber that accommodates the substrate while supplying a compound gas containing a component of the thin film and a reducing gas into the process chamber. The second step is arranged to generate second plasma within the process chamber while supplying the reducing gas into the process chamber, subsequently to the first step.
摘要:
A cleaning process is performed on the surface of a nickel silicide film serving as an underlayer. Then, a Ti film is formed to have a film thickness of not less than 2 nm but less than 10 nm by CVD using a Ti compound gas. Then, the Ti film is nitrided. Then, a TiN film is formed on the Ti film thus nitrided, by CVD using a Ti compound gas and a gas containing N and H.
摘要:
A cleaning process is performed on the surface of a nickel silicide film serving as an underlayer. Then, a Ti film is formed to have a film thickness of not less than 2 nm but less than 10 nm by CVD using a Ti compound gas. Then, the Ti film is nitrided. Then, a TiN film is formed on the Ti film thus nitrided, by CVD using a Ti compound gas and a gas containing N and H.
摘要:
The invention relates to a gas supplying unit to be arranged to hermetically fit in an opening formed at a ceiling part of a processing container for conducting a process to a substrate. The gas supplying unit includes a plurality of nickel members. A large number of gas-supplying holes is formed at a lower surface of the gas supplying unit, a process gas is adapted to be supplied from the large number of gas-supplying holes into the processing container, and the plurality of nickel members is fixed to each other via an intermediate member for preventing sticking made of a material different from nickel.
摘要:
A barrier layer including a titanium film is formed at a low temperature, and a TiSix film is self-conformably formed at the interface between the titanium film and the base. In forming the TiSix film 507, the following steps are repeated without introducing argon gas: a first step of introducing a titanium compound gas into the processing chamber to adsorb the titanium compound gas onto the silicon surface of a silicon substrate 502; a second step of stopping introduction of the titanium compound gas into the processing chamber and removing the titanium compound gas remaining in the processing chamber; and a third step of generating plasma in the processing chamber while introducing hydrogen gas into the processing chamber to reduce the titanium compound gas adsorbed on the silicon surface and react it with the silicon in the silicon surface to form the TiSix film 507.
摘要:
A gas delivery apparatus comprises: a chamber surrounding a substrate to be processed; a showerhead disposed within the chamber; and gas supply means supplying a gas comprising a mixture of NH3 and H2 to the chamber, in which a coating layer deposited on the interior of the chamber and the showerhead contain nickel (Ni). When the apparatus is utilized to practice a method comprising exposing an object W to a gas comprising a mixture consisting of NH3 and H2, the H2/NH3 gas flow rate ratio and the temperature are controlled so that the reaction of nickel contained in the coating layer deposited on the interior of the chamber and the showerhead is suppressed.