Abstract:
An integrated tandem solar cell includes a first solar cell including a rear electrode, a light absorption layer disposed on the rear electrode, and a buffer layer disposed on the light absorption layer; a recombination layer including a first transparent conductive layer disposed on the buffer layer; a nanoparticle layer that is transparent and conductive, that is disposed on the first transparent conductive layer, and that planarizes the first solar cell; and a second transparent conductive layer disposed on the nanoparticle layer; and a second solar cell that is a perovskite solar cell including a perovskite layer and that is disposed on and bonded to the second transparent conductive layer of the recombination layer. The recombination layer electrically joins the first and second solar cells and planarizes the first solar cell so that the second solar cell is uniformly deposited in all regions thereof.
Abstract:
A method for preparing a film of a CIS semiconductor compound overcoated by a color layer includes preparing an electrolyte solution by mixing precursors of film constituents including Cu, In, and Se with a solvent; configuring an electrodeposition circuit by connecting an electrochemical cell comprising the electrolyte solution, a working electrode, and a counter electrode to a voltage or current supply device; disposing a photomask having the predetermined pattern on the working electrode; producing the film through the photomask on a surface of the working electrode by applying a reduction voltage or current; disposing a light source to emit light toward the photomask; and photoelectrically depositing the film on the surface of the working electrode at least in the predetermined pattern while illuminating light through the photomask; and forming a color layer of CuSe at least in the predetermined pattern on the film employed as a working electrode using photo-electrodeposition.
Abstract:
Disclosed are a monolithic solar cell and a method of manufacturing the same. More particularly, the present invention provides a monolithic solar cell including a first solar cell formed by sequentially stacking an electrode, a silicon substrate, and an n-type emitter layer; a junction layer formed on the an n-type emitter layer; an interfacial layer formed on the junction layer; and a second solar cell including a perovskite layer and integrated onto the interfacial layer. The interfacial layer according to the present invention may be pyrolyzed and thus partially or completely lost during a monolithic solar cell manufacturing process. In addition, by providing an interfacial layer between the two cells constituting a monolithic solar cell according to the present invention, charge transfer and recombination characteristics between the two cells can be improved and thus a monolithic solar cell having significantly improved photoelectric conversion efficiency can be provided.
Abstract:
Provided are a method of preparing a magnesium oxide structure and a magnesium oxide structure prepared by using the method. The magnesium oxide structure has meso-macro pores, a large specific surface area, and high strength, thereby enabling production of a catalyst with high catalytic activity.
Abstract:
An embodiment includes a method of texturing a semiconductor substrate, a semiconductor substrate manufactured using the method, and a solar cell including the semiconductor substrate, the method including: forming metal nanoparticles on a semiconductor substrate, primarily etching the semiconductor substrate, removing the metal nanoparticles, and secondarily etching the primarily etched semiconductor substrate to form nanostructures.
Abstract:
A localized surface plasmon resonance sensor may include a localized surface plasmon excitation layer including a chalcogenide material. The chalcogenide material may include: a first material including at least one of selenium (Se) and tellurium (Te); and a second material including at least one of germanium (Ge) and antimony (Sb). The localized surface plasmon excitation layer may be prepared by forming a thin film including the chalcogenide material and crystallizing the thin film to have a predetermined pattern by irradiating laser on the thin film.
Abstract:
Provided is a multi-junction solar cell in which two or more absorption layers having different bandgaps are stacked on one another. The multi-junction solar cell includes a first cell including a first absorption layer, and a second cell electrically connected in series onto the first cell, wherein the second cell includes a second absorption layer having a higher bandgap compared to the first absorption layer, and a plurality of recesses penetrating through the second absorption layer.
Abstract:
Provided are a porous silicon carbide nanocomposite structure comprising nanowires that are self-formed, a preparation method thereof, and a catalyst comprising the same, in which the catalyst with excellent activity may be prepared by uniformly supporting a catalytically active component in meso-macro pores and nanowires.
Abstract:
A monolithic solar cell includes a first solar cell that is a sequential stack of an electrode, a silicon substrate, and an n-type emitter layer; a recombination layer disposed on the n-type emitter layer; an interfacial layer that is a double layer constituted of PEDOT:PSS and poly-TPD or PEDOT:PSS and PCDTBT, and that is disposed on the recombination layer; and a second solar cell that includes a p-type hole selective layer and a perovskite layer disposed on the p-type hole selective layer, the a p-type hole selective layer contacting and being integrated onto the interfacial layer of the first solar cell in a heat treatment during which the interfacial layer is partially decomposed, wherein the presence of the interfacial layer prevents a reduction in photoelectric conversion efficiency that occurs if the first solar cell and the second solar cell are combined without the presence of the interfacial layer.
Abstract:
Provided is a multi-junction solar cell in which two or more absorption layers having different bandgaps are stacked on one another. The multi-junction solar cell includes a first cell including a first absorption layer, and a second cell electrically connected in series onto the first cell, wherein the second cell includes a second absorption layer having a higher bandgap compared to the first absorption layer, and a plurality of recesses penetrating through the second absorption layer.