METHOD OF PRINTING NANOSTRUCTURE
    1.
    发明公开

    公开(公告)号:US20240103362A1

    公开(公告)日:2024-03-28

    申请号:US18470084

    申请日:2023-09-19

    CPC classification number: G03F7/0002 B82Y30/00 B82Y40/00

    Abstract: Disclosed herein is a method of printing a nanostructure including: preparing a template substrate on which a pattern is formed; forming a replica pattern having an inverse phase of the pattern by coating a polymer thin film on an upper portion of the template substrate, adhering a thermal release tape to an upper portion of the polymer thin film, and separating the polymer thin film from the template substrate; forming a nanostructure by depositing a functional material on the replica pattern; and printing the nanostructure deposited on the replica pattern to a substrate by positioning the nanostructure on the substrate, applying heat and pressure to the nanostructure, and weakening an adhesive force between the thermal release tape and the replica pattern by the heat.

    WATER-INSOLUBLE METAL HYDRATE CONTAINING AN ALKALI METAL AND PREPARATION METHODS THEREOF
    2.
    发明申请
    WATER-INSOLUBLE METAL HYDRATE CONTAINING AN ALKALI METAL AND PREPARATION METHODS THEREOF 审中-公开
    含有碱金属的水不溶性金属水合物及其制备方法

    公开(公告)号:US20160090527A1

    公开(公告)日:2016-03-31

    申请号:US14551602

    申请日:2014-11-24

    Abstract: The present invention relates to a novel method for preparing a water-insoluble metal hydroxide, and a use thereof. The water-insoluble metal hydroxide of the present invention is conveniently and efficiently prepared s through the high-temperature heat treatment step two times and the washing step, and thus contains a small amount of an alkali metal and has a high crystallinity and a phase purity. The water-insoluble metal hydroxide of the present invention or metal oxide therefrom exhibits an absorption wavelength at a low wavelength range (for example, 490 nm or less) and a light emitting wavelength at a high wavelength range (for example, from 500 nm or more to less than 1,100 nm). Accordingly, the water-insoluble metal hydroxide of the present invention may be efficiently used in various applications such as a fire retardant, an antacid, an adsorbent and so forth, and may also be doped with another metal ion to be utilized as a raw material for fabricating a catalyst, a fluorescent material, an electrode material, a secondary battery material and the like.

    Abstract translation: 本发明涉及一种制备水不溶性金属氢氧化物的新方法及其用途。 本发明的水不溶性金属氢氧化物通过高温热处理步骤两次和洗涤步骤方便有效地制备,因此含有少量碱金属并具有高结晶度和相纯度 。 本发明的水不溶性金属氢氧化物或其金属氧化物在低波长范围(例如490nm以下)和高波长范围(例如500nm以下的发光波长)或 多至小于1100nm)。 因此,本发明的水不溶性金属氢氧化物可以有效地用于阻燃剂,抗酸剂,吸附剂等各种用途中,也可以掺杂有作为原料的其它金属离子 用于制造催化剂,荧光材料,电极材料,二次电池材料等。

    DOWN-SHIFTING NANOPHOSPHORS, METHOD FOR PREPARING THE SAME, AND LUMINESCENT SOLAR CONCENTRATOR USING THE SAME

    公开(公告)号:US20210332293A1

    公开(公告)日:2021-10-28

    申请号:US17121766

    申请日:2020-12-15

    Abstract: The present disclosure relates to down-shifting nanophosphors, a method for preparing the same, and a luminescent solar concentrator (LSC) using the same. The down-shifting nanophosphors according to an embodiment of the present disclosure include a core including NaYF4 nanocrystals doped with neodymium (Nd) and ytterbium (Yb), and further include a neodymium (Nd)-doped crystalline shell surrounding the core, or further include a NaYF4 crystalline shell surrounding the crystalline shell. Therefore, the down-shifting nanophosphors efficiently absorb near infrared rays with a wavelength range of 700-900 nm and efficiently emit near infrared rays with a wavelength range of 950-1050 nm. In addition, the down-shifting nanophosphors according to an embodiment of the present disclosure has a size of 60 nm or less, and thus can be applied to manufacture transparent LSC films with ease and can realize transparent solar cell modules having high near infrared ray shifting efficiency.

    PHOSPHOR POWDER AND METHOD OF MANUFACTURING THE SAME

    公开(公告)号:US20170096599A1

    公开(公告)日:2017-04-06

    申请号:US15178889

    申请日:2016-06-10

    CPC classification number: C09K11/025 C09K11/565

    Abstract: There is provided a phosphor powder which includes a wavelength converting material and a silica-based inorganic substance surrounding the wavelength converting material and represented by the following Formula 1, wherein a content of a hydrosilyl group (Si—H) is greater than or equal to 10 ppm by weight, based on the total weight of the silica-based inorganic substance: wherein X represents oxygen (O) or an amine group (NH), Y represents hydrogen (H), a hydroxyl group (OH), an amino group (NH2), or an alkyl group containing heteroelements, and the heteroelements include at least one selected from the group consisting of phosphorus (P), nitrogen (N), sulfur (S), oxygen (O), and a halogen element.

Patent Agency Ranking