摘要:
A plurality of bit line contacts provided on one bit line BL are arranged on every other one of spaces each provided between every adjacent two of word lines WL and a plurality of bit line contacts provided on an adjacent bit line BL are arranged on every other one of spaces each provided between every adjacent two of word lines WL which is different from the space in which a corresponding one of the bit line contacts formed on the former bit line is arranged.
摘要:
A plurality of bit line contacts provided on one bit line BL are arranged on every other one of spaces each provided between every adjacent two of word lines WL and a plurality of bit line contacts provided on an adjacent bit line BL are arranged on every other one of spaces each provided between every adjacent two of word lines WL which is different from the space in which a corresponding one of the bit line contacts formed on the former bit line is arranged.
摘要:
In a DRAM having a structure in which a storage node electrode is formed via an insulator film in a trench formed in a memory cell region to thereby form a capacitor, and in which the storage node electrode is connected in the source/drain regions of a MOSFET through a storage node contact formed in a part of the insulator film, the trench is disposed so as to deviate widthwise in a channel region of the MOSFET, so that the distance between adjacent element regions is reduced without causing misalignment of masks used in the formation of the storage node contact, thereby to provide a miniaturized high-reliability DRAM. In addition, the storage node contact and the trench can be formed in large size.
摘要:
A P channel MIS type semiconductor device have P type source and drain regions formed in a N type semiconductor substrate. Each source and drain regions are constructed the low and high impurity concentration layers. Channel side edges of the low concentration impurity layers arranged inside of the high concentration impurity layers. These double layer source and drain structure prevent the off set gate construction and the parasitic resistance.
摘要:
A semiconductor memory device has a semiconductor substrate, a first semiconductor region of a first conduction type formed on the semiconductor substrate, a second semiconductor region of a second conduction type opposite to the first conduction type, formed on the first semiconductor region. A trench capacitors having a trench extends through the first semiconductor region and the second semiconductor region, and is formed such that its top does not reach a top surface of the second semiconductor region, and the trench is formed therein with a conductive trench fill. A pair of gate electrodes is formed on the second semiconductor region, overlying the trench capacitor. A pair of insulating layers is formed to cover each of the pair of gate electrodes. A conductive layer is formed between the pair of insulating layers to self-align to each of the pair of insulating layers. The conductive layer has a leading end insulated from the second semiconductor region and reaching the interior of the second semiconductor region, and electrically connected to the conductive trench fill of the trench capacitor. A pair of third semiconductor regions of the first conduction type are formed in the second semiconductor region, and positioned opposite to each other with respect to the conductive layer. Each of the third semiconductor regions is directly in contact with the conductive layer, and constitutes either a source or a drain of transistors having one of the pair of gate electrodes, respectively. The pair of third semiconductor regions is formed substantially to a uniform depth.
摘要:
A semiconductor memory device includes a semiconductor substrate and first, second, third and fourth spaced apart word lines formed on the semiconductor substrate and extending in a first direction. First, second, and third spaced apart bit lines are formed on the semiconductor substrate and extend in a second direction. An isolated active areas are formed on the semiconductor substrate under the second bit line. A first transfer gate transistor is formed in the active area, the first transfer gate transistor including spaced apart source and drain regions and the second word line being insulatively spaced from a channel region between the source and drain regions. A second transfer gate transistor is formed in the active area, the second transfer gate transistor including spaced apart source and drain regions and the third word line being insulatively spaced from a channel region between the source and drain regions. A first storage node is formed in a portion of the semiconductor substrate which is between the first and second word lines, between the first and second bit lines, under the second bit line, and between the second and third bit line. A second storage node is formed in a portion of the semiconductor substrate which is between the third and fourth word lines, between the first and second bit lines, under the second bit line, and between the second and third bit line.
摘要:
A semiconductor memory device comprises a plurality of columnar portions formed in memory cell array regions on a semiconductor substrate. The columnar portions are isolated from one another by a plurality of trenches, and these trenches have first and second bottoms that are different in depth. The semiconductor device comprises a plurality of cell transistors which include first diffusion layer regions formed in the first bottoms, which are shallower than the second bottoms, second diffusion layer regions formed in surface portions of the columnar portions, and a plurality of gate electrodes which are adjacent to both the first and second diffusion layer regions and extend along at least one side-surface portions of the columnar portions.
摘要:
A groove, which runs vertically and horizontally, is formed in a substrate, thereby a plurality of silicon pillars are formed in a matrix manner. A field oxidation film is formed on the central portion of the groove. A drain diffusion layer is formed on the upper portion of each silicon pillar, and a source diffusion layer is formed on the bottom portion of the groove. A gate electrode, serving as a word line, a storage node contacting the source diffusion layer, and a cell plate are sequentially buried to enclose the surroundings of each silicon pillar, and a bit line is formed in an uppermost layer, thereby a DRAM cell array is structured.
摘要:
A bipolar transistor Q.sub.1 having a collector formed of a substrate region SUB of a MOS transistor M.sub.1, a base formed of the drain region of the MOS transistor and an emitter formed on the base and connected to a bit line BL is connected between the bit line BL and a memory cell MC formed of the MOS transistor M.sub.1 and and a capacitor C.sub.1 and the current amplifying operation of a bipolar transistor is used for data readout.
摘要:
A groove, which runs vertically and horizontally, is formed in a substrate, thereby a plurality of silicon pillars are formed in a matrix manner. A field oxidation film is formed on the central portion of the groove. A drain diffusion layer is formed on the upper portion of each silicon pillar, and a source diffusion layer is formed on the bottom portion of the groove. A gate electrode, serving as a word line, a storage node contacting the source diffusion layer, and a cell plate are sequentially buried to enclose the surroundings of each silicon pillar, and a bit line is formed in an uppermost layer, thereby a DRAM cell array is structured.