摘要:
Methods and systems for calibrating a temperature control system in a vapor deposition chamber. A temperature sensor senses temperature within a semiconductor processing chamber and generates an output signal. A temperature control system controls a chamber temperature by controlling a heating apparatus based on the output signal. A method includes instructing the control system to target a setpoint temperature, and depositing a layer of material onto a surface in the chamber by a vapor deposition process. A variation of a property of the layer is measured while depositing the layer, the property known to vary cyclically as a thickness of the layer increases. The measured property is allowed to vary cyclically for one or more cycles. If there is a difference between a time period of one or more of the cycles and an expected time period associated with the setpoint temperature, the temperature control system is adjusted based on the difference.
摘要:
An apparatus for processing a semiconductor substrate, including a process chamber having a plurality of walls and a substrate support to support the substrate within the process chamber. A radiative heat source is positioned outside the process chamber to heat the substrate through the walls when the substrate is positioned on the substrate support. In some embodiments, lenses are positioned between the heat source and the substrate to focus or diffuse radiation from the heat source and thereby selectively alter the radiation intensity incident on certain portions of the substrate. In other embodiments, diffusing surfaces are positioned between the heat source and the substrate to diffuse radiation from the heat source and thereby selectively reduce the radiation intensity incident on certain portions of the substrate.
摘要:
A substrate support system comprises a relatively thin circular substrate holder having a plurality of passages extending between top and bottom surfaces thereof. The substrate holder includes a single substrate support ledge or a plurality of substrate support spacer vanes configured to support a peripheral portion of the substrate backside so that a thin gap is formed between the substrate and the substrate holder. The vanes can be angled to resist backside deposition of reactant gases as the substrate holder is rotated. A hollow support member provides support to an underside of the substrate holder. The hollow support member is configured to convey gas (e.g., inert gas or cleaning gas) upward into one or more of the passages of the substrate holder. The upwardly conveyed gas flows into the gap between the substrate and the substrate holder. Depending upon the embodiment of the invention, the gas in the gap can then flow either (1) outward and upward around the substrate edge or (2) downward through passages of the substrate holder, if any, that do not lead back into the hollow support member. The gas that flows outward and upward around the substrate edge inhibits backside deposition of reactant gases above the substrate. The gas that flows downward through the passages that do not lead back to the support member advantageously inhibits autodoping by sweeping out-diffused dopant atoms away from the substrate front side. In one embodiment, the support member comprises a hollow multi-armed support spider that conveys gas into selected ones of the passages. In another embodiment, the support member comprises a bowl- or cup-shaped structure that conveys gas upward into all of the passages. In yet another embodiment, the support member comprises a bowl- or cup-shaped structure that conveys gas upward into all but one or more of the passages.
摘要:
A substrate support system comprises a substrate holder having a plurality of passages extending between top and bottom surfaces thereof. The substrate holder supports a peripheral portion of the substrate backside so that a thin gap is formed between the substrate and the substrate holder. A hollow support member provides support to an underside of, and is configured to convey gas upward into one or more of the passages of, the substrate holder. The upwardly conveyed gas flows into the gap between the substrate and the substrate holder. Depending upon the embodiment, the gas then flows either outward and upward around the substrate edge (to inhibit backside deposition of reactant gases above the substrate) or downward through passages of the substrate holder, if any, that do not lead back into the hollow support member (to inhibit autodoping by sweeping out-diffused dopant atoms away from the substrate backside).
摘要:
A substrate support system comprises a substrate holder having a plurality of passages extending between top and bottom surfaces thereof. The substrate holder supports a peripheral portion of the substrate backside so that a thin gap is formed between the substrate and the substrate holder. A hollow support member provides support to an underside of, and is configured to convey gas upward into one or more of the passages of, the substrate holder. The upwardly conveyed gas flows into the gap between the substrate and the substrate holder. Depending upon the embodiment, the gas then flows either outward and upward around the substrate edge (to inhibit backside deposition of reactant gases above the substrate) or downward through passages of the substrate holder, if any, that do not lead back into the hollow support member (to inhibit autodoping by sweeping out-diffused dopant atoms away from the substrate backside).
摘要:
A substrate support system comprises a substrate holder having a plurality of passages extending between top and bottom surfaces thereof. The substrate holder supports a peripheral portion of the substrate backside so that a thin gap is formed between the substrate and the substrate holder. A hollow support member provides support to an underside of, and is configured to convey gas upward into one or more of the passages of, the substrate holder. The upwardly conveyed gas flows into the gap between the substrate and the substrate holder. Depending upon the embodiment, the gas then flows either outward and upward around the substrate edge (to inhibit backside deposition of reactant gases above the substrate) or downward through passages of the substrate holder, if any, that do not lead back into the hollow support member (to inhibit autodoping by sweeping out-diffused dopant atoms away from the substrate backside).
摘要:
Disclosed herein is an apparatus and method for treating the frontside and backside of a semiconductor substrate with a process gas. A reactor chamber is equipped with a first load platform configured to permit the access of a process gas to both sides of a substrate. In some embodiments, the apparatus also comprises a second load platform configured for further processing the frontside of the substrate. The substrate is loaded on the first load platform and processed on both sides, then moved to the second load platform and processed on one side.
摘要:
A susceptor including a generally circular body having a face with a radially inward section and a radially outward section proximate a circumference of the body, the radially outward section having at least one ring extending upward for contacting a bottom surface of a substrate, and wherein the radially inward section lacks a ring extending upward from the face.
摘要:
A substrate holder for processing a semiconductor substrate includes a deep, generally vertical annular groove configured to impede the radial flow of heat within the holder and reduce heat loss from the annular side edge of the holder. The holder includes one or more support elements, such as a flat contiguous surface or a plurality of protrusions defined by intersecting grooves. The one or more support elements are configured to support a substrate a particular size in a support plane defined by the one or more support elements. The groove is configured to surround an outer edge of the substrate when the substrate is supported on the one or more support elements. In a preferred embodiment, the groove has a depth of at least 25% of the thickness of the substrate holder.
摘要:
A susceptor including a generally circular body having a face with a radially inward section and a radially outward section proximate a circumference of the body, the radially outward section having at least one ring extending upward for contacting a bottom surface of a substrate, and wherein the radially inward section lacks a ring extending upward from the face.