摘要:
A substrate support system comprises a substrate holder having a plurality of passages extending between top and bottom surfaces thereof. The substrate holder supports a peripheral portion of the substrate backside so that a thin gap is formed between the substrate and the substrate holder. A hollow support member provides support to an underside of, and is configured to convey gas upward into one or more of the passages of, the substrate holder. The upwardly conveyed gas flows into the gap between the substrate and the substrate holder. Depending upon the embodiment, the gas then flows either outward and upward around the substrate edge (to inhibit backside deposition of reactant gases above the substrate) or downward through passages of the substrate holder, if any, that do not lead back into the hollow support member (to inhibit autodoping by sweeping out-diffused dopant atoms away from the substrate backside).
摘要:
A substrate support system comprises a substrate holder having a plurality of passages extending between top and bottom surfaces thereof. The substrate holder supports a peripheral portion of the substrate backside so that a thin gap is formed between the substrate and the substrate holder. A hollow support member provides support to an underside of, and is configured to convey gas upward into one or more of the passages of, the substrate holder. The upwardly conveyed gas flows into the gap between the substrate and the substrate holder. Depending upon the embodiment, the gas then flows either outward and upward around the substrate edge (to inhibit backside deposition of reactant gases above the substrate) or downward through passages of the substrate holder, if any, that do not lead back into the hollow support member (to inhibit autodoping by sweeping out-diffused dopant atoms away from the substrate backside).
摘要:
A substrate support system comprises a substrate holder having a plurality of passages extending between top and bottom surfaces thereof. The substrate holder supports a peripheral portion of the substrate backside so that a thin gap is formed between the substrate and the substrate holder. A hollow support member provides support to an underside of, and is configured to convey gas upward into one or more of the passages of, the substrate holder. The upwardly conveyed gas flows into the gap between the substrate and the substrate holder. Depending upon the embodiment, the gas then flows either outward and upward around the substrate edge (to inhibit backside deposition of reactant gases above the substrate) or downward through passages of the substrate holder, if any, that do not lead back into the hollow support member (to inhibit autodoping by sweeping out-diffused dopant atoms away from the substrate backside).
摘要:
A substrate support system comprises a relatively thin circular substrate holder having a plurality of passages extending between top and bottom surfaces thereof. The substrate holder includes a single substrate support ledge or a plurality of substrate support spacer vanes configured to support a peripheral portion of the substrate backside so that a thin gap is formed between the substrate and the substrate holder. The vanes can be angled to resist backside deposition of reactant gases as the substrate holder is rotated. A hollow support member provides support to an underside of the substrate holder. The hollow support member is configured to convey gas (e.g., inert gas or cleaning gas) upward into one or more of the passages of the substrate holder. The upwardly conveyed gas flows into the gap between the substrate and the substrate holder. Depending upon the embodiment of the invention, the gas in the gap can then flow either (1) outward and upward around the substrate edge or (2) downward through passages of the substrate holder, if any, that do not lead back into the hollow support member. The gas that flows outward and upward around the substrate edge inhibits backside deposition of reactant gases above the substrate. The gas that flows downward through the passages that do not lead back to the support member advantageously inhibits autodoping by sweeping out-diffused dopant atoms away from the substrate front side. In one embodiment, the support member comprises a hollow multi-armed support spider that conveys gas into selected ones of the passages. In another embodiment, the support member comprises a bowl- or cup-shaped structure that conveys gas upward into all of the passages. In yet another embodiment, the support member comprises a bowl- or cup-shaped structure that conveys gas upward into all but one or more of the passages.
摘要:
A thermocouple for use in a semiconductor processing reaction is described. The thermocouple includes a sheath having a measuring tip and an opening at the opposing end. A support member that receives a portion of a first wire and a second wire is received within the sheath. The first and second wires form a junction that contacts the inner surface of the sheath at the measuring tip. A spacing member is secured at the opening of the sheath and receives the support member. The spacing member allows the support member, first wire, and second wire to freely thermally expand relative to each other without introducing compression or tension stresses therein.
摘要:
A thermocouple for use in a semiconductor processing reaction is described. The thermocouple includes a sheath having a measuring tip and an opening at the opposing end. A support member that receives a portion of a first wire and a second wire is received within the sheath. The first and second wires form a junction that contacts the inner surface of the sheath at the measuring tip. A spacing member is secured at the opening of the sheath and receives the support member. The spacing member allows the support member, first wire, and second wire to freely thermally expand relative to each other without introducing compression or tension stresses therein.
摘要:
A thermocouple for use in a semiconductor processing reaction is described. The thermocouple includes a sheath having a measuring tip and an opening at the opposing end. A support member that receives a portion of a first wire and a second wire is received within the sheath. The first and second wires form a junction that contacts the inner surface of the sheath at the measuring tip. A spacing member is secured at the opening of the sheath and receives the support member. The spacing member allows the support member, first wire, and second wire to freely thermally expand relative to each other without introducing compression or tension stresses therein.
摘要:
A thermocouple for use in a semiconductor processing reaction is described. The thermocouple includes a sheath having a measuring tip and an opening at the opposing end. A support member that receives a portion of a first wire and a second wire is received within the sheath. The first and second wires form a junction that contacts the inner surface of the sheath at the measuring tip. A spacing member is secured at the opening of the sheath and receives the support member. The spacing member allows the support member, first wire, and second wire to freely thermally expand relative to each other without introducing compression or tension stresses therein.
摘要:
A substrate support system comprises a substrate holder for supporting a substrate. The substrate holder comprises an interior portion sized and shaped to extend beneath most or all of a substrate supported on the substrate holder. The substrate holder has mass density that varies, preferably in order to compensate for variations in substrate temperature owing to surface geometry variations of the interior portion, so as to provide a more uniform thermal coupling between the substrate and substrate holder. The substrate holder is preferably configured to be spaced further apart from a substrate at the center than at the outer perimeter.
摘要:
A vapor deposition device includes a reactor including a reaction chamber and an injector for injecting vapor into the reaction chamber. The device also includes a manifold for delivering vapor to the injector. The manifold includes a manifold body having an internal bore, a first distribution channel disposed within the body in a plane intersecting the longitudinal axis of the bore, and a plurality of supply channels disposed within the body and in flow communication with the first distribution channel and with the bore. Each of the first supply channels is disposed at an acute angle with respect to the longitudinal axis of the bore, and each of the supply channels connects with the bore at a different angular position about the longitudinal axis. The distribution channel (and thus, the supply channels) can be connected with a common reactant source. Related deposition methods are also described.