Abstract:
Methods, apparatuses, and systems related to reduction of roughness on a sidewall of an opening are described. An example method includes forming a liner material on a first sidewall of an opening in a first silicate material and on a second sidewall of the opening in an overlying second silicate material, where the liner material is formed to a thickness that covers a roughness on the first sidewall extending into the opening. The example method further includes removing the liner material from the first sidewall of the opening and the second sidewall of the opening with a non-selective etch chemistry to reduce the roughness on the first sidewall.
Abstract:
A semiconductor device assembly that includes a substrate having a first side and a second side, the first side having at least one dummy pad and at least one electrical pad. The semiconductor device assembly includes a first semiconductor device having a first side and a second side and at least one electrical pillar extending from the second side. The electrical pillar is connected to the electrical pad via solder to form an electrical interconnect. The semiconductor device assembly includes at least one dummy pillar extending from the second side of the first semiconductor device and a liquid positioned between an end of the dummy pillar and the dummy pad. The surface tension of the liquid pulls the dummy pillar towards the dummy pad. The surface tension may reduce or minimize a warpage of the semiconductor device assembly and/or align the dummy pillar and the dummy pad.
Abstract:
Semiconductor devices having discretely located passivation material are disclosed herein. In one embodiment, a semiconductor device assembly can include a bond pad having a bonding surface with a process artifact. A passivation material can be positioned to at least partially fill a portion of the process artifact. A conductive structure can be positioned to extend across the bonding surface of the bond pad.
Abstract:
The present technology is directed to manufacturing semiconductor dies with under-bump metal (UBM) structures for die-to-die and/or package-to-package interconnects or other types of interconnects. In one embodiment, a method for forming under-bump metal (UBM) structures on a semiconductor die comprises constructing a UBM pillar by plating a first material onto first areas of a seed structure and depositing a second material over the first material. The first material has first electrical potential and the second material has a second electrical potential greater than the first electrical potential. The method further comprises reducing the difference in the electrical potential between the first material and the second material, and then removing second areas of the seed structure between the UBM pillars thereby forming UBM structures on the semiconductor die.
Abstract:
A method for selective removing material from a substrate without damage to copper filling a via and extending at least partially through the substrate. The method comprises oxidizing a semiconductor structure comprising a substrate and at least one copper feature and removing a portion of the substrate using an etchant comprising SF6 without forming copper sulfide on the at least one copper feature. Additional methods are also disclosed, as well as semiconductor structures produced from such methods.
Abstract:
Methods of forming supports for 3D structures on semiconductor structures comprise forming the supports from photodefinable materials by deposition, selective exposure and curing. Semiconductor dice including 3D structures having associated supports, and semiconductor devices are also disclosed.
Abstract:
A semiconductor device assembly that includes a substrate having a first side and a second side, the first side having at least one dummy pad and at least one electrical pad. The semiconductor device assembly includes a first semiconductor device having a first side and a second side and at least one electrical pillar extending from the second side. The electrical pillar is connected to the electrical pad via solder to form an electrical interconnect. The semiconductor device assembly includes at least one dummy pillar extending from the second side of the first semiconductor device and a liquid positioned between an end of the dummy pillar and the dummy pad. The surface tension of the liquid pulls the dummy pillar towards the dummy pad. The surface tension may reduce or minimize a warpage of the semiconductor device assembly and/or align the dummy pillar and the dummy pad.
Abstract:
A semiconductor device assembly that includes a first side of a semiconductor device supported on a substrate to permit the processing of a second side of the semiconductor device. A filler material deposited on the semiconductor device supports the semiconductor device on the substrate. The filler material does not adhere to the semiconductor device or the substrate. Alternatively, the filler material may be deposited on the substrate. Instead of a filler material, the substrate may include a topography configured to support the semiconductor device. Adhesive applied between an outer edge of the first side of the semiconductor and the substrate bonds the outer edge of the semiconductor device to the substrate to form a semiconductor device assembly. A second side of the semiconductor device may then be processed and the outer edge of the semiconductor device may be cut off to release the semiconductor device from the assembly.
Abstract:
A method of forming conductive traces comprises forming a seed material over a surface of a substrate, forming a patterned mask material over the seed material to define trenches leaving portions of the seed material within the trenches exposed, and depositing a conductive material over the exposed seed material in the trenches to form conductive traces. At least a portion of the patterned mask material is removed, a barrier formed over side surfaces and upper surfaces of the conductive traces, and exposed portions of the seed material are removed. Conductive traces and structures incorporating conductive traces are also disclosed.
Abstract:
A method of forming conductive traces comprises forming a seed material over a surface of a substrate, forming a patterned mask material over the seed material to define trenches leaving portions of the seed material within the trenches exposed, and depositing a conductive material over the exposed seed material in the trenches to form conductive traces. At least a portion of the patterned mask material is removed, a barrier formed over side surfaces and upper surfaces of the conductive traces, and exposed portions of the seed material are removed. Conductive traces and structures incorporating conductive traces are also disclosed.