-
公开(公告)号:US20240315018A1
公开(公告)日:2024-09-19
申请号:US18676056
申请日:2024-05-28
Applicant: Micron Technology, Inc.
Inventor: Justin B. Dorhout , Kunal R. Parekh , Martin C. Roberts , Mohd Kamran Akhtar , Chet E. Carter , David Daycock
IPC: H10B41/35 , H01L21/033 , H01L21/308 , H01L21/311 , H01L21/3215 , H01L21/67 , H01L21/768 , H10B20/00 , H10B41/20 , H10B41/23 , H10B41/27 , H10B43/27 , H10B43/35
CPC classification number: H10B41/35 , H01L21/0337 , H01L21/3086 , H01L21/31144 , H01L21/3215 , H01L21/32155 , H01L21/67063 , H01L21/76802 , H10B20/383 , H10B41/20 , H10B41/23 , H10B41/27 , H10B43/27 , H01L2221/1063 , H10B43/35
Abstract: Some embodiments include an integrated assembly with a semiconductor channel material having a boundary region where a more-heavily-doped region interfaces with a less-heavily-doped region. The more-heavily-doped region and the less-heavily-doped region have the same majority carriers. The integrated assembly includes a gating structure adjacent the semiconductor channel material and having a gating region and an interconnecting region of a common and continuous material. The gating region has a length extending along a segment of the more-heavily-doped region, a segment of the less-heavily-doped region, and the boundary region. The interconnecting region extends laterally outward from the gating region on a side opposite the semiconductor channel region, and is narrower than the length of the gating region. Some embodiments include methods of forming integrated assemblies.
-
公开(公告)号:US20240315001A1
公开(公告)日:2024-09-19
申请号:US18598585
申请日:2024-03-07
Applicant: Micron Technology, Inc.
Inventor: Kamal M. Karda , David Daycock , Albert Liao , Si-Woo Lee , Haitao Liu
IPC: H10B12/00
Abstract: Memory circuitry comprises vertically-alternating tiers of insulative material and memory cells. The memory cells individually comprising a transistor comprise a first source/drain region, a second source/drain region, and a channel region between the first and second source/drain regions. A gate is operatively-proximate the channel region. A capacitor comprises a first capacitor electrode, a second capacitor electrode, and a capacitor insulator between the first and second capacitor electrodes. The first capacitor electrode is directly electrically coupled to the first source/drain region. The second capacitor electrode of multiple of the capacitors is directly electrically coupled with one another. Digitlines extend elevationally through the vertically-alternating tiers. Individual of the second source/drain regions of individual of the transistors that are in different memory-cell tiers are directly electrically coupled to individual of the digitlines. A wordline is in individual of the memory-cell tiers that comprises the gate of multiple of the individual transistors in the individual memory-cell tiers. The wordline in a lower of the memory-cell tiers has a greater minimum width than a minimum width of the wordline in a higher of the memory-cell tiers that is directly above the lower memory-cell tier. Methods are also disclosed.
-
3.
公开(公告)号:US11641742B2
公开(公告)日:2023-05-02
申请号:US17468170
申请日:2021-09-07
Applicant: Micron Technology, Inc.
Inventor: Cole Smith , Ramey M. Abdelrahaman , Silvia Borsari , Chris M. Carlson , David Daycock , Matthew J. King , Jin Lu
IPC: H01L27/11582 , G11C5/06 , H01L27/11556 , H01L27/1157 , H01L23/522 , H01L27/11524 , H01L27/11565 , H01L27/11519
Abstract: A method used in forming a memory array comprising strings of memory cells comprises forming a stack comprising vertically-alternating first tiers and second tiers. Horizontally-elongated trenches are formed into the stack to form laterally-spaced memory-block regions. A wall is formed in individual of the trenches laterally-between immediately-laterally-adjacent of the memory-block regions. The forming of the wall comprises lining sides of the trenches with insulative material comprising at least one of an insulative nitride and elemental-form boron. A core material is formed in the trenches to span laterally-between the at least one of the insulative nitride and the elemental-form boron. Structure independent of method is disclosed.
-
公开(公告)号:US11616075B2
公开(公告)日:2023-03-28
申请号:US17156241
申请日:2021-01-22
Applicant: Micron Technology, Inc.
Inventor: John D. Hopkins , David Daycock
IPC: H01L27/11582 , H01L27/11524 , H01L27/11556 , H01L27/1157 , H01L29/10
Abstract: A method that is part of a method of forming an elevationally-extending string of memory cells comprises forming an intervening structure that is elevationally between upper and lower stacks that respectively comprise alternating tiers comprising different composition materials. The intervening structure is formed to comprise an elevationally-extending-dopant-diffusion barrier and laterally-central material that is laterally inward of the dopant-diffusion barrier and has dopant therein. Some of the dopant is thermally diffused from the laterally-central material into upper-stack-channel material. The dopant-diffusion barrier during the thermally diffusing is used to cause more thermal diffusion of said dopant into the upper-stack-channel material than diffusion of said dopant, if any, into lower-stack-channel material. Other embodiments, including structure independent of method, are disclosed.
-
5.
公开(公告)号:US11152388B2
公开(公告)日:2021-10-19
申请号:US16653062
申请日:2019-10-15
Applicant: Micron Technology, Inc.
Inventor: Cole Smith , Ramey M. Abdelrahaman , Silvia Borsari , Chris M. Carlson , David Daycock , Matthew J. King , Jin Lu
IPC: H01L27/11582 , G11C5/06 , H01L27/11556 , H01L27/1157 , H01L23/522 , H01L27/11524
Abstract: A method used in forming a memory array comprising strings of memory cells comprises forming a stack comprising vertically-alternating first tiers and second tiers. Horizontally-elongated trenches are formed into the stack to form laterally-spaced memory-block regions. A wall is formed in individual of the trenches laterally-between immediately-laterally-adjacent of the memory-block regions. The forming of the wall comprises lining sides of the trenches with insulative material comprising at least one of an insulative nitride and elemental-form boron. A core material is formed in the trenches to span laterally-between the at least one of the insulative nitride and the elemental-form boron. Structure independent of method is disclosed.
-
公开(公告)号:US11081495B2
公开(公告)日:2021-08-03
申请号:US16438334
申请日:2019-06-11
Applicant: Micron Technology, Inc.
Inventor: Justin B. Dorhout , David Daycock , Kunal R. Parekh , Martin C. Roberts , Yushi Hu
IPC: H01L29/76 , H01L27/115 , H01L27/11582 , H01L29/66 , H01L29/78
Abstract: Some embodiments include an integrated structure having a conductive material, a select device gate material over the conductive material, and vertically-stacked conductive levels over the select device gate material. Vertically-extending monolithic channel material is adjacent the select device gate material and the conductive levels. The monolithic channel material contains a lower segment adjacent the select device gate material and an upper segment adjacent the conductive levels. A first vertically-extending region is between the lower segment of the monolithic channel material and the select device gate material. The first vertically-extending region contains a first material. A second vertically-extending region is between the upper segment of the monolithic channel material and the conductive levels. The second vertically-extending region contains a material which is different in composition from the first material.
-
公开(公告)号:US10985179B2
公开(公告)日:2021-04-20
申请号:US16532019
申请日:2019-08-05
Applicant: Micron Technology, inc.
Inventor: Yi Hu , Merri L. Carlson , Anilkumar Chandolu , Indra V. Chary , David Daycock , Harsh Narendrakumar Jain , Matthew J. King , Jian Li , Brett D. Lowe , Prakash Rau Mokhna Rau , Lifang Xu
IPC: H01L27/11582 , H01L27/11556 , H01L27/11565 , H01L21/28 , H01L21/768 , H01L27/115 , H01L21/311 , H01L21/02 , H01L27/11526 , H01L27/11519 , H01L27/11573 , H01L21/3213
Abstract: A method used in forming a memory array comprising strings of memory cells and operative through-array-vias (TAVs) comprises forming a stack comprising vertically-alternating insulative tiers and conductive tiers. The stack comprises a TAV region and an operative memory-cell-string region. The TAV region comprises spaced operative TAV areas. Operative channel-material strings are formed in the stack in the operative memory-cell-string region and dummy channel-material strings are formed in the stack in the TAV region laterally outside of and not within the operative TAV areas. Operative TAVs are formed in individual of the spaced operative TAV areas in the TAV region. Other methods and structure independent of method are disclosed.
-
公开(公告)号:US10224336B2
公开(公告)日:2019-03-05
申请号:US15975907
申请日:2018-05-10
Applicant: Micron Technology, Inc.
Inventor: David Daycock
IPC: G11C16/04 , H01L27/11551 , H01L27/11526 , H01L27/11573 , H01L27/11578 , G11C5/02 , H01L27/11582 , H01L49/02
Abstract: Integrated circuitry has an array circuitry region having a repeating array of electronic components. An adjacent circuitry region is immediately laterally adjacent to and contacts one elongated major peripheral side of the array circuitry region. The adjacent circuitry region is distinct in structure from the array circuitry region where contacting the array circuitry region and distinct in operation from the array circuitry region. The array circuitry region and the adjacent circuitry region have a respective longitudinally non-linear edge at an interface relative one another along the one elongated major peripheral side of the array circuitry region. Other embodiments are disclosed.
-
公开(公告)号:US20250098169A1
公开(公告)日:2025-03-20
申请号:US18966391
申请日:2024-12-03
Applicant: Micron Technology, Inc.
Inventor: Justin B. Dorhout , David Daycock , Kunal R. Parekh , Martin C. Roberts , Yushi Hu
Abstract: Some embodiments include an integrated structure having a conductive material, a select device gate material over the conductive material, and vertically-stacked conductive levels over the select device gate material. Vertically-extending monolithic channel material is adjacent the select device gate material and the conductive levels. The monolithic channel material contains a lower segment adjacent the select device gate material and an upper segment adjacent the conductive levels. A first vertically-extending region is between the lower segment of the monolithic channel material and the select device gate material. The first vertically-extending region contains a first material. A second vertically-extending region is between the upper segment of the monolithic channel material and the conductive levels. The second vertically-extending region contains a material which is different in composition from the first material.
-
公开(公告)号:US20230209822A1
公开(公告)日:2023-06-29
申请号:US18117989
申请日:2023-03-06
Applicant: Micron Technology, Inc.
Inventor: Justin B. Dorhout , Kunal R. Parekh , Martin C. Roberts , Mohd Kamran Akhtar , Chet E. Carter , David Daycock
IPC: H10B41/35 , H01L21/308 , H01L21/311 , H01L21/033 , H01L21/768 , H01L21/67 , H01L21/3215 , H10B20/00 , H10B41/20 , H10B41/23 , H10B41/27 , H10B43/27
CPC classification number: H10B41/35 , H01L21/0337 , H01L21/3086 , H01L21/3215 , H01L21/31144 , H01L21/32155 , H01L21/67063 , H01L21/76802 , H10B20/383 , H10B41/20 , H10B41/23 , H10B41/27 , H10B43/27 , H01L2221/1063 , H10B43/35
Abstract: Some embodiments include an integrated assembly with a semiconductor channel material having a boundary region where a more-heavily-doped region interfaces with a less-heavily-doped region. The more-heavily-doped region and the less-heavily-doped region have the same majority carriers. The integrated assembly includes a gating structure adjacent the semiconductor channel material and having a gating region and an interconnecting region of a common and continuous material. The gating region has a length extending along a segment of the more-heavily-doped region, a segment of the less-heavily-doped region, and the boundary region. The interconnecting region extends laterally outward from the gating region on a side opposite the semiconductor channel region, and is narrower than the length of the gating region. Some embodiments include methods of forming integrated assemblies.
-
-
-
-
-
-
-
-
-