Abstract:
An integrated interposer between a first component and a second component includes a substrate. The substrate may have thermal and/or mechanical properties with values lying between the thermal and/or mechanical properties of the first component and the second component. Active devices are disposed on a first surface of the substrate. A contact layer is coupled to the active devices and configured to couple at least the first component and a third component to the integrated interposer. At least one through via(s) is coupled to the contact layer and extends through the substrate to a second surface of the substrate. An interconnect layer is disposed on the second surface of the substrate and coupled to the at least one through via(s). The interconnect layer is configured to couple the second component to the integrated interposer.
Abstract:
Provided are space-efficient capacitors that have a higher quality factor than conventional designs and improve coupling of electrical energy from a through-glass via (TGV) to a dielectric. For example, provided is a TGV having a non-rectangular cross-section, where one end of the TGV is coupled to a first metal plate. A dielectric material is formed on the first metal plate. A second metal plate is formed on the dielectric material in a manner that overlaps at least a portion of the first metal plate to form at least one overlapped region of the dielectric material. At least a part of the perimeter of the overlapped region is non-planar. The overlapped region can be formed in a shape of a closed ring, in a plurality of portions of a ring shape, in substantially a quarter of a ring shape, and/or in substantially a half of a ring shape.
Abstract:
Provided are space-efficient capacitors that have a higher quality factor than conventional designs and improve coupling of electrical energy from a through-glass via (TGV) to a dielectric. For example, provided is a TGV having a non-rectangular cross-section, where one end of the TGV is coupled to a first metal plate. A dielectric material is formed on the first metal plate. A second metal plate is formed on the dielectric material in a manner that overlaps at least a portion of the first metal plate to form at least one overlapped region of the dielectric material. At least a part of the perimeter of the overlapped region is non-planar. The overlapped region can be formed in a shape of a closed ring, in a plurality of portions of a ring shape, in substantially a quarter of a ring shape, and/or in substantially a half of a ring shape.
Abstract:
Various aspects of the present disclosure generally relate to a sensor module. In some aspects, a sensor module may include a collar configured to be attached to a camera module for a user device. The collar may include a first opening that is configured to align with an aperture of a camera of the camera module, and a second opening. The sensor module may include a sensor embedded in the collar. The sensor may be aligned with the second opening of the collar. Numerous other aspects are provided.
Abstract:
In one example, an image sensor module comprises one or more covers having at least a first opening and a second opening, a first lens mounted in the first opening and having a first field of view (FOV) centered at a first axis having a first orientation, a second lens mounted in the second opening and having a second FOV centered at a second axis having a second orientation different from the first orientation, a first image sensor housed within the one or more covers and configured to detect light via the first lens, and a second image sensor housed within the one or more covers and configured to detect light via the second lens. The first image sensor and the second image sensor are configured to provide, based on the detected light, image data of a combined FOV larger than each of the first FOV and the second FOV.
Abstract:
Some aspects pertain to an inductor apparatus that includes a first metal layer including a plurality of first interconnects, a second metal including a plurality of second interconnects, a first dielectric layer between the first metal layer and the second metal layer, and an inductor. The inductor includes a plurality of vias, where the plurality of vias are configured to couple the plurality of first interconnects to the plurality of second interconnects. The inductor includes a plurality of inductor loops formed by the plurality of vias, the plurality of first interconnects and the plurality of second interconnects. The inductor further includes a first magnetic layer and a second magnetic layer, located between the first interconnects and the second interconnects; and a third magnetic layer and an optional fourth magnetic layer outside of the plurality of inductor loops.
Abstract:
A device may include a surface at least partially defining an enclosed region, a plurality of fluids within the enclosed region, the plurality of fluids comprising at least a first fluid having a first acoustic impedance and a second fluid having a second acoustic impedance different from the first acoustic impedance, a first piezoelectric transducer disposed on the surface, the first piezoelectric transducer being configured to generate a first wave reception signal based, at least in part, on an ultrasonic return wave received through at least one of the plurality of fluids, and a processor coupled to the first piezoelectric transducer and configured to determine a measurement of a tilt of the device based, at least in part, on the first wave reception signal.
Abstract:
A voltage regulator having a coil inductor is integrated or embedded in a system-on-chip (SOC) device. The coil inductor is fabricated on an inductor wafer with through vias, and the inductor wafer is joined with an SOC wafer for integration with the SOC device.
Abstract:
An integrated circuit package includes a core such as a thin glass core with through-core vias. A photo-patternable material is disposed directly on surfaces of the core and in the through-core vias and is selectively patterned to expose at least an exposed portion of the surface of the core and the through-core vias. A metal layer, such as copper, is disposed in the exposed portion of the core and in the through-core vias. A mechanical handler frame may be used to clamp together the various layers including the core and the photo-patternable material. The photo-patternable material that remains after patterning is permanent, and prevents the mechanical handler frame from directly contacting the core. Thus the photo-patternable material provides mechanical support to the core and protects the core from the mechanical handler.
Abstract:
Implementations of the subject matter described herein relate to sensors including piezoelectric micromechanical ultrasonic transducer (PMUT) sensor elements and arrays thereof. The PMUT sensor elements may be switchable between a non-ultrasonic force detection mode and an ultrasonic imaging mode. A PMUT sensor element may include a diaphragm that is capable of a static displacement on application of a force and is capable of a dynamic displacement when the PMUT sensor element transmits or receives ultrasonic signals. In some implementations, a PMUT sensor element includes a two dimensional-electron gas structure on the diaphragm. The sensors may further include a sensor controller configured to switch between a non-ultrasonic force detection mode and an ultrasonic imaging mode for one or more of the PMUT sensor elements, wherein an applied force is measured in the non-ultrasonic force detection mode and wherein an object is imaged ultrasonically during the ultrasonic imaging mode.