Abstract:
A VTMOS transistor in semiconductor material of a first type of conductivity includes a body region of a second type of conductivity and a source region of the first type of conductivity. A gate region extends into the main surface through the body region and is insulated from the semiconductor material. A region of the gate region extends onto the main surface is insulated from the rest of the gate region. An anode region of the first type of conductivity is formed into said insulated region, and a cathode region of the second type of conductivity is formed into said insulated region in contact with the anode region; the anode region and the cathode region define a thermal diode electrically insulated from the chip.
Abstract:
A vertical-conduction MOSFET device, includes: a semiconductor body, having a front side and a back side and having a first conductivity; a trench-gate region; a body region, having the first conductivity; a source region, having a second conductivity; and a drain region, having the second conductivity. The source region, body region, and drain region are aligned with one another along a first direction and define a channel area, which, in a conduction state of the MOSFET device, hosts a conductive channel. The drain region borders on a portion of the semiconductor body having the first conductivity, thus forming a junction diode, which, in an inhibition state of the MOSFET device, is adapted to cause a leakage current to flow outside the channel area.
Abstract:
A semiconductor device that includes a semiconductor body, having a front side and a back side opposite to one another in a first direction of extension; a drift region, which extends in the semiconductor body, faces the front side, and has a first type of conductivity and a first value of doping; a body region, which has a second type of conductivity opposite to the first type of conductivity, extends in the drift region, and faces the front side of the semiconductor body; a first control terminal, which extends on the front side of the semiconductor body, at least partially overlapping, in the first direction of extension, the body region; and a second control terminal, which extends to a first depth in the semiconductor body, inside the body region, and is staggered with respect to the first control terminal.
Abstract:
A vertical conduction integrated electronic device including: a semiconductor body; a trench that extends through part of the semiconductor body and delimits a portion of the semiconductor body, which forms a first conduction region having a first type of conductivity and a body region having a second type of conductivity, which overlies the first conduction region; a gate region of conductive material, which extends within the trench; an insulation region of dielectric material, which extends within the trench and is arranged between the gate region and the body region; and a second conduction region, which overlies the body region. The second conduction region is formed by a conductor.
Abstract:
An embodiment of an integrated electronic device formed in a body of semiconductor material, which includes: a substrate of a first semiconductor material, the first semiconductor material having a first bandgap; a first epitaxial region of a second semiconductor material and having a first type of conductivity, which overlies the substrate and defines a first surface, the second semiconductor material having a second bandgap wider than the first bandgap; and a second epitaxial region of the first semiconductor material, which overlies, and is in direct contact with, the first epitaxial region. The first epitaxial region includes a first buffer layer, which overlies the substrate, and a drift layer, which overlies the first buffer layer and defines the first surface, the first buffer layer and the drift layer having different doping levels.
Abstract:
A VTMOS transistor in semiconductor material of a first type of conductivity includes a body region of a second type of conductivity and a source region of the first type of conductivity. A gate region extends into the main surface through the body region and is insulated from the semiconductor material. A region of the gate region extends onto the main surface is insulated from the rest of the gate region. An anode region of the first type of conductivity is formed into said insulated region, and a cathode region of the second type of conductivity is formed into said insulated region in contact with the anode region; the anode region and the cathode region define a thermal diode electrically insulated from the chip.
Abstract:
A vertical conduction integrated electronic device including: a semiconductor body; a trench that extends through part of the semiconductor body and delimits a portion of the semiconductor body, which forms a first conduction region having a first type of conductivity and a body region having a second type of conductivity, which overlies the first conduction region; a gate region of conductive material, which extends within the trench; an insulation region of dielectric material, which extends within the trench and is arranged between the gate region and the body region; and a second conduction region, which overlies the body region. The second conduction region is formed by a conductor.
Abstract:
A vertical conduction integrated electronic device including: a semiconductor body; a trench that extends through part of the semiconductor body and delimits a portion of the semiconductor body, which forms a first conduction region having a first type of conductivity and a body region having a second type of conductivity, which overlies the first conduction region; a gate region of conductive material, which extends within the trench; an insulation region of dielectric material, which extends within the trench and is arranged between the gate region and the body region; and a second conduction region, which overlies the body region. The second conduction region is formed by a conductor.
Abstract:
A VTMOS transistor in semiconductor material of a first type of conductivity includes a body region of a second type of conductivity and a source region of the first type of conductivity. A gate region extends into the main surface through the body region and is insulated from the semiconductor material. A region of the gate region extends onto the main surface is insulated from the rest of the gate region. An anode region of the first type of conductivity is formed into said insulated region, and a cathode region of the second type of conductivity is formed into said insulated region in contact with the anode region; the anode region and the cathode region define a thermal diode electrically insulated from the chip.
Abstract:
A vertical conduction integrated electronic device including: a semiconductor body; a trench that extends through part of the semiconductor body and delimits a portion of the semiconductor body, which forms a first conduction region having a first type of conductivity and a body region having a second type of conductivity, which overlies the first conduction region; a gate region of conductive material, which extends within the trench; an insulation region of dielectric material, which extends within the trench and is arranged between the gate region and the body region; and a second conduction region, which overlies the body region. The second conduction region is formed by a conductor.