Abstract:
A semiconductor light emitting device includes a substrate formed of a first material; and a convex portion protruding from the substrate and including: a first layer formed of the first material as that of the substrate; and a second layer formed of a second material different from the first material and disposed on the first layer. A second height of the second layer is greater than a first height of the first layer.
Abstract:
An integrated circuit including a first active region and a second active region extending in a first direction and spaced apart from each other in a second direction intersecting the first direction; a power rail and a ground rail extending in the first direction and spaced apart from the first and second active regions and each other in the second direction; source/drain contacts extending in the second direction on at least a portion of the first or second active region, gate structures extending in the second direction and on at least a portion of the first and second active regions, a power rail configured to supply power through source/drain contact vias, and a ground rail configured to supply a ground voltage through source/drain contact vias.
Abstract:
An integrated circuit includes a first standard cell including a first first-type transistor, a first second-type transistor, a third second-type transistor, and a third first-type transistor, a second standard cell including a second first-type transistor, a second second-type transistor, a fourth second-type transistor and a fourth first-type transistor, a plurality of wiring layers which are disposed on the first and second standard cells and includes a first wiring layer, a second wiring layer, and a third wiring layer sequentially stacked. A source contact of the first first-type transistor and a source contact of the second first-type transistor are electrically connected through a first power rail of the plurality of wiring layers, and a source contact of the third first-type transistor and a source contact of the fourth first-type transistor are electrically connected through a second power rail of the plurality of wiring layers.
Abstract:
A nitride semiconductor light emitting device includes first and second type nitride semiconductor layers. An active layer is disposed between the first and second type nitride semiconductor layers. A current spreading layer is disposed between the second type nitride semiconductor layer and the active layer. The current spreading layer includes first nitride thin films and second nitride thin films which are alternately laminated. The first nitride thin films have band gaps larger than those of the second nitride thin films. A first plurality of first nitride thin films are positioned at outer first and second sides of the current spreading layer. The first plurality of first nitride thin films have a thickness greater than that of a second plurality of first nitride thin films positioned between the first plurality of first nitride thin films.
Abstract:
A method of manufacturing a nitride semiconductor light emitting device includes forming a first conductivity type nitride semiconductor layer. An active layer is formed on the first conductivity type nitride semiconductor layer. A second conductivity type nitride semiconductor layer is formed on the active layer. In the forming of the active layer, quantum well layers and quantum barrier layers are alternatively stacked and at least two dopant layers are formed inside of at least one of the quantum well layers. The dopant layers are doped with a dopant in a predetermined concentration.
Abstract:
A semiconductor light emitting device includes an n-type semiconductor layer, a p-type semiconductor layer, and an active layer interposed between the n-type semiconductor layer and the p-type semiconductor layer. The p-type semiconductor layer includes a first impurity region including a p-type impurity and a second impurity region including an n-type impurity. The first and second impurity regions are alternately repeated at least once.
Abstract:
An integrated circuit includes a first standard cell including a first first-type transistor, a first second-type transistor, a third second-type transistor, and a third first-type transistor, a second standard cell including a second first-type transistor, a second second-type transistor, a fourth second-type transistor and a fourth first-type transistor, a plurality of wiring layers which are disposed on the first and second standard cells and includes a first wiring layer, a second wiring layer, and a third wiring layer sequentially stacked. A source contact of the first first-type transistor and a source contact of the second first-type transistor are electrically connected through a first power rail of the plurality of wiring layers, and a source contact of the third first-type transistor and a source contact of the fourth first-type transistor are electrically connected through a second power rail of the plurality of wiring layers.
Abstract:
An integrated circuit includes a first standard cell including a first first-type transistor, a first second-type transistor, a third second-type transistor, and a third first-type transistor, a second standard cell including a second first-type transistor, a second second-type transistor, a fourth second-type transistor and a fourth first-type transistor, a plurality of wiring layers which are disposed on the first and second standard cells and includes a first wiring layer, a second wiring layer, and a third wiring layer sequentially stacked. A source contact of the first first-type transistor and a source contact of the second first-type transistor are electrically connected through a first power rail of the plurality of wiring layers, and a source contact of the third first-type transistor and a source contact of the fourth first-type transistor are electrically connected through a second power rail of the plurality of wiring layers.
Abstract:
A semiconductor light emitting device may include a base semiconductor layer formed on a substrate and having defect regions therein; cavities disposed in regions corresponding to the defect regions on the base semiconductor layer; a capping layer disposed to cover at least one region of the base semiconductor layer and the cavities; and a light emitting structure disposed on the capping layer and including a first conductivity-type semiconductor layer, an active layer, and a second conductivity-type semiconductor layer. Lattice defects formed in the light emitting structure may be reduced to enhance luminous efficiency.
Abstract:
A semiconductor light emitting device is provided and includes an n-type semiconductor layer, a p-type semiconductor layer having a structure in which first and second doping regions including p-type impurities provided in different doping concentrations are alternately disposed one or more times; and an active layer disposed between the n-type semiconductor layer and the p-type semiconductor layer, wherein the p-type semiconductor layer includes at least one interface between the first and second doping regions to prevent diffusion of p-type impurities.