Abstract:
A semiconductor light emitting device is provided including a first conductivity-type semiconductor layer, an active layer including at least one quantum barrier layer made of InxGa(1-x)N, wherein 0≦x
Abstract translation:提供了一种半导体发光器件,其包括第一导电型半导体层,包括由In x Ga(1-x)N制成的至少一个量子势垒层的有源层,其中0< 1E; x
Abstract:
A chemical vapor deposition (CVD) apparatus including a chamber, a susceptor in the chamber, and a heating chamber may be provided. The susceptor includes a rotor, a rotational shaft coupled to a lower portion of the rotor, a driving device coupled to the rotational shaft, and at least one pocket defined at an upper surface of the rotor. The driving device rotatably drives the rotational shaft. The at least one pocket includes a mounting portion configured to receive a substrate thereon and a protruding portion, e.g., a convex portion, protruding from a bottom surface of the at least one pocket such that the protruding portion is positioned at a region corresponding to the rotational shaft. The heating unit surrounds the rotational shaft and heats the substrate.
Abstract:
A chemical vapor deposition apparatus includes: a reaction chamber including an inner tube having a predetermined volume of an inner space, and an outer tube tightly sealing the inner tube; a wafer holder disposed within the inner tube and on which a plurality of wafers are stacked at predetermined intervals; and a gas supply unit including at least one gas line supplying an external reaction gas to the reaction chamber, and a plurality of spray nozzles communicating with the gas line to spray the reaction gas to the wafers, whereby semiconductor epitaxial thin films are grown on the surfaces of the wafers, wherein the semiconductor epitaxial thin film grown on the surface of the wafer includes a light emitting structure in which a first-conductivity-type semiconductor layer, an active layer, and a second-conductivity-type semiconductor layer are sequentially formed.
Abstract:
There is provided a method of manufacturing a light emitting diode and a light emitting diode manufactured by the same. The method includes growing a first conductivity type nitride semiconductor layer and an undoped nitride semiconductor layer on a substrate sequentially in a first reaction chamber; transferring the substrate having the first conductivity type nitride semiconductor layer and the undoped nitride semiconductor layer grown thereon to a second reaction chamber; growing an additional first conductivity type nitride semiconductor layer on the undoped nitride semiconductor layer in the second reaction chamber; growing an active layer on the additional first conductivity type nitride semiconductor layer; and growing a second conductivity type nitride semiconductor layer on the active layer.
Abstract:
Provided a method of manufacturing a semiconductor light emitting device, the method includes forming a light emitting structure by growing a first conductivity type semiconductor layer, an active layer and a second conductivity type semiconductor layer on a substrate. The forming of the light emitting structure includes: forming a protective layer after a portion of the light emitting structure is formed forming a sacrificial layer on the protective layer; and continuously forming a further portion of the light emitting structure on the sacrificial layer.
Abstract:
A nitride semiconductor light emitting device includes first and second type nitride semiconductor layers. An active layer is disposed between the first and second type nitride semiconductor layers. A current spreading layer is disposed between the second type nitride semiconductor layer and the active layer. The current spreading layer includes first nitride thin films and second nitride thin films which are alternately laminated. The first nitride thin films have band gaps larger than those of the second nitride thin films. A first plurality of first nitride thin films are positioned at outer first and second sides of the current spreading layer. The first plurality of first nitride thin films have a thickness greater than that of a second plurality of first nitride thin films positioned between the first plurality of first nitride thin films.
Abstract:
There is provided a semiconductor light emitting device having a zinc oxide-based transparent conductive thin film in which a Group III element is doped to have waveforms having a plurality of periods in a thickness direction.
Abstract:
A semiconductor light emitting device may include a base semiconductor layer formed on a substrate and having defect regions therein; cavities disposed in regions corresponding to the defect regions on the base semiconductor layer; a capping layer disposed to cover at least one region of the base semiconductor layer and the cavities; and a light emitting structure disposed on the capping layer and including a first conductivity-type semiconductor layer, an active layer, and a second conductivity-type semiconductor layer. Lattice defects formed in the light emitting structure may be reduced to enhance luminous efficiency.
Abstract:
A light emitting device package includes a body including a lead frame part, and a light emitting laminate disposed on the body and electrically connected to the lead frame part to emit light. The light emitting laminate has a multilayer structure in which a plurality of light emitting devices are stacked. In the plurality of light emitting devices, an upper light emitting device is stacked on a lower light emitting device such that vertex portions of the upper light emitting device do not overlap and are offset from vertex portions of the lower light emitting device, and portions of the lower light emitting device are externally exposed.
Abstract:
A semiconductor light emitting device includes a substrate having a through hole formed in a thickness direction thereof and a conductive nanowire provided in at least a portion of the through hole, and a light emitting structure formed on the substrate and including a first conductive semiconductor layer, an active layer, and a second conductive semiconductor layer.