Abstract:
A substrate processing apparatus includes a chamber providing a space in which a substrate is processed, a first substrate support within the chamber and configured to support the substrate when the substrate is loaded into chamber, a second substrate support within the chamber and configured to support the substrate in a height greater than the height in which the first substrate supports the substrate, a first supply port through which a supercritical fluid is supplied to a first space under the substrate of a chamber space, a second supply port through which the supercritical fluid is supplied to a second space above the substrate of the chamber space, and an exhaust port through which the supercritical fluid is exhausted from the chamber.
Abstract:
A substrate processing apparatus includes a chamber providing a space in which a substrate is processed, a first substrate support within the chamber and configured to support the substrate when the substrate is loaded into chamber, a second substrate support within the chamber and configured to support the substrate in a height greater than the height in which the first substrate supports the substrate, a first supply port through which a supercritical fluid is supplied to a first space under the substrate of a chamber space, a second supply port through which the supercritical fluid is supplied to a second space above the substrate of the chamber space, and an exhaust port through which the supercritical fluid is exhausted from the chamber.
Abstract:
A substrate processing apparatus includes a vessel providing a processing space for processing a substrate, a substrate support supporting the substrate loaded in the processing space, and a barrier between a side wall of the vessel and the substrate support and surrounding an edge of the substrate supported by the substrate support.
Abstract:
Disclosed are a supercritical process chamber and an apparatus having the same. The process chamber includes a body frame having a protrusion protruding in an upward vertical direction from a first surface of the body frame and a recess defined by the protrusion and the first surface of the body frame; a cover frame; a buffer chamber arranged between the body frame and the cover frame; and a connector. The buffer chamber includes an inner vessel detachably coupled to the body frame providing a chamber space in the recess and an inner cover detachably coupled to the cover frame. The inner cover is in contact with a first surface of the inner vessel enclosing the chamber space from surroundings. The connector couples the body frame and the cover frame having the buffer chamber arranged therebetween such that the enclosed chamber space is transformed into a process space in which the supercritical process is performed.
Abstract:
A composition for removing photoresist, including an alkyl ammonium fluoride salt in an amount ranging from about 0.5 weight percent to about 10 weight percent, based on a total weight of the composition; an organic sulfonic acid in an amount ranging from about 1 weight percent to about 20 weight percent, based on the total weight of the composition; and a lactone-based solvent in an amount ranging from about 70 weight percent to about 98.5 weight percent, based on the total weight of the composition.
Abstract:
A cleaning solution composition includes an organic solvent in which a metal fluoride does not dissolve, at least one fluoride compound that generates bifluoride (HF2−), and deionized water, wherein the deionized water may be included in a concentration of 1.5 wt % or lower based on the total weight of the cleaning solution composition.
Abstract:
A cleaning solution composition includes an organic solvent in which a metal fluoride does not dissolve, at least one fluoride compound that generates bifluoride (HF2−), and deionized water, wherein the deionized water may be included in a concentration of 1.5 wt % or lower based on the total weight of the cleaning solution composition.
Abstract:
A composition for removing photoresist, including an alkyl ammonium fluoride salt in an amount ranging from about 0.5 weight percent to about 10 weight percent, based on a total weight of the composition; an organic sulfonic acid in an amount ranging from about 1 weight percent to about 20 weight percent, based on the total weight of the composition; and a lactone-based solvent in an amount ranging from about 70 weight percent to about 98.5 weight percent, based on the total weight of the composition.