Abstract:
A composition for removing photoresist, including an alkyl ammonium fluoride salt in an amount ranging from about 0.5 weight percent to about 10 weight percent, based on a total weight of the composition; an organic sulfonic acid in an amount ranging from about 1 weight percent to about 20 weight percent, based on the total weight of the composition; and a lactone-based solvent in an amount ranging from about 70 weight percent to about 98.5 weight percent, based on the total weight of the composition.
Abstract:
Provided is a substrate treating apparatus including a housing; a plurality of opening-and-closing members configured to provide a driving force for opening and closing the housing; a fluid storing member supplying a fluid to the opening-and-closing members; and a fluid distribution unit connected to the fluid storing member via a supply conduit to distribute the fluid supplied from the fluid storing member to the opening-and-closing members. The fluid distribution unit includes a distribution conduit diverging from the supply conduit and connected to a corresponding one of the opening-and-closing members; and a fluid distribution member provided at a junction between the supply conduit and the distribution conduit.
Abstract:
A process chamber and a substrate processing apparatus including the same are disclosed. The process chamber includes a first housing and a second housing on the first housing. The first housing includes a first outer wall, a first partition wall facing the first outer wall, and a first side wall connecting the first outer wall and the first partition wall. The second housing includes a second outer wall, a second partition wall between the second outer wall and the first partition wall, and a second side wall connecting the second outer wall and the second partition wall. Each of the first and second outer walls has a thickness greater than a thickness of the first partition wall and a thickness of the second partition wall.
Abstract:
A method of purifying a cleaning agent is provided. The method includes heating a first mixed solution including an etching agent, a first cleaning agent, and a second cleaning agent at or below a first temperature and distilling the etching agent and the first cleaning agent and removing the second cleaning agent. The method includes condensing or compressing the etching agent and the first cleaning agent forming a second mixed solution including the etching agent and the first cleaning agent. The method includes heating the second mixed solution at a temperature lower than a second temperature, redistilling the etching agent and extracting the first cleaning agent. The second temperature is lower than the first temperature.
Abstract:
In embodiment, the method includes cleaning a preceding substrate, and drying the preceding substrate and cleaning a next substrate. Drying the preceding substrate and cleaning the next substrate include determining a cleaning start time of the next substrate, and the cleaning start time corresponds to a desired time point after starting drying the preceding substrate.
Abstract:
A method of manufacture and fluid supply system for treating a substrate is provided. The fluid supply system for treating a substrate may include a substrate dry part supplying a dry fluid to dry a rinse solution doped on a substrate; a dry fluid separation part retrieving a mixed fluid that the dry fluid and the rinse solution are mixed with each other during a dry process of the substrate from the substrate dry part and separating the dry fluid from the mixed fluid; and a dry fluid supply part resupplying the dry fluid separated from the dry fluid separation part to the substrate dry part.
Abstract:
Provided are an etching composition and a method for manufacturing a semiconductor device using the same. According to embodiments, the etching composition may comprise from about 15 wt % to about 75 wt % of peracetic acid; a fluorine compound; an amine compound; and an organic solvent.
Abstract:
A source supplier includes a source reservoir that contains a liquefied source fluid for a supercritical process, a vaporizer that vaporizes the liquefied source fluid into a gaseous source fluid under high pressure, a purifier that removes organic impurities and moistures from the gaseous source fluid and an analyzer connected to the purifier that analyzes an impurity fraction and a moisture fraction in the gaseous source fluid. Moisture and organic impurities are removed from the source fluid to reduce the moisture concentration of the supercritical fluid in the supercritical process.
Abstract:
A cleaning apparatus for removing particles from a substrate is provided. The cleaning apparatus includes a first cleaning unit including a first dual nozzle supplying, to a substrate, a first chemical liquid and a first spray including a first liquid dissolving the first chemical liquid, and a second cleaning unit including a second dual nozzle supplying, to the substrate, a second chemical liquid different from the first chemical liquid and a second spray including a second liquid dissolving the second chemical liquid and being the same as the first liquid.
Abstract:
Disclosed are an apparatus for treating a substrate and a method of treating substrates. The apparatus includes an inlet valve through which a supercritical fluid flows into the process chamber until an inner pressure of the process chamber reaches a first pressure and a turbulent flow generator turbulently supplementing the supercritical fluid into the process chamber until the inner pressure of the process chamber is recovered to the first pressure. A pressure drop module partially removes a supercritical mixture from the process chamber until the inner pressure of the process chamber is dropped to the second pressure. A pressure drop mode and a supplemental mode may be alternately repeated by the flow controller.