Abstract:
Curing of a passivation layer applied to the surface of a ferroelectric integrated circuit so as to enhance the polarization characteristics of the ferroelectric structures. A passivation layer, such as a polyimide, is applied to the surface of the ferroelectric integrated circuit after fabrication of the active devices. The passivation layer is cured by exposure to a high temperature, below the Curie temperature of the ferroelectric material, for a short duration such as on the order of ten minutes. Variable frequency microwave energy may be used to effect such curing. The cured passivation layer attains a tensile stress state, and as a result imparts a compressive stress upon the underlying ferroelectric material. Polarization may be further enhanced by polarizing the ferroelectric material prior to the cure process.
Abstract:
Curing of a passivation layer applied to the surface of a ferroelectric integrated circuit so as to enhance the polarization characteristics of the ferroelectric structures. A passivation layer, such as a polyimide, is applied to the surface of the ferroelectric integrated circuit after fabrication of the active devices. The passivation layer is cured by exposure to a high temperature, below the Curie temperature of the ferroelectric material, for a short duration such as on the order of ten minutes. Variable frequency microwave energy may be used to effect such curing. The cured passivation layer attains a tensile stress state, and as a result imparts a compressive stress upon the underlying ferroelectric material. Polarization may be further enhanced by polarizing the ferroelectric material prior to the cure process.
Abstract:
A method of forming an integrated circuit is described. The method first positions a semiconductor wafer in a processing chamber, and second, laser anneals at least a portion of the semiconductor wafer. The laser annealing includes tracing a first laser beam, in a first path having a first direction, across the at least a portion of the semiconductor wafer, tracing a second laser beam, in a second path having a second direction, opposite to and colinear with the first direction, across the at least a portion of the semiconductor wafer.
Abstract:
Curing of a passivation layer applied to the surface of a ferroelectric integrated circuit so as to enhance the polarization characteristics of the ferroelectric structures. A passivation layer, such as a polyimide, is applied to the surface of the ferroelectric integrated circuit after fabrication of the active devices. The passivation layer is cured by exposure to a high temperature, below the Curie temperature of the ferroelectric material, for a short duration such as on the order of ten minutes. Variable frequency microwave energy may be used to effect such curing. The cured passivation layer attains a tensile stress state, and as a result imparts a compressive stress upon the underlying ferroelectric material. Polarization may be further enhanced by polarizing the ferroelectric material prior to the cure process.
Abstract:
Ferroelectric capacitor structures for integrated decoupling capacitors and the like. The ferroelectric capacitor structure includes two or more ferroelectric capacitors connected in series with one another between voltage nodes. The series connection of the ferroelectric capacitors reduces the applied voltage across each, enabling the use of rough ferroelectric dielectric material, such as PZT deposited by MOCVD. Matched construction of the series-connected capacitors, as well as uniform polarity of the applied voltage across each, is beneficial in reducing the maximum voltage across any one of the capacitors, reducing the vulnerability to dielectric breakdown.
Abstract:
Ferroelectric capacitor structures for integrated decoupling capacitors and the like. The ferroelectric capacitor structure includes two or more ferroelectric capacitors connected in series with one another between voltage nodes. The series connection of the ferroelectric capacitors reduces the applied voltage across each, enabling the use of rough ferroelectric dielectric material, such as PZT deposited by MOCVD. Matched construction of the series-connected capacitors, as well as uniform polarity of the applied voltage across each, is beneficial in reducing the maximum voltage across any one of the capacitors, reducing the vulnerability to dielectric breakdown.