摘要:
A principal feature of the present invention is to clean a surface of a semiconductor substrate without providing a damaged layer to the surface thereof. A native oxide film formed on the surface of a silicon substrate is etched by plasma employing a gas containing fluorine. The surface of the semiconductor substrate is again subjected to plasma etching by employing a gas containing fluorine in order to remove a surface damaged layer and a fluorocarbon layer formed in the above step of plasma etching. The semiconductor substrate surface is irradiated with ultraviolet rays under a low pressure in order to dissociate and remove fluorine atoms chemically adsorbed to the semiconductor substrate surface upon the latter plasma etching.
摘要:
A method of cleaning semiconductor devices which removes or transmutes the contaminants sticking on sidewalls of a pattern or a trench is formed is disclosed. A substrate to be treated on which a pattern or a trench is formed is located in a processing container. A reactive gas which reacts with the contaminants sticking on the sidewall of the pattern or the trench to produce reactive ions which remove or transmute the contaminants is introduced into the processing container. Plasma of the reactive gas is produced by electronic cyclotron resonance in order to produce reactive ions from the reactive gas introduced into the processing container. According to the method, the temperature of the reactive ions in the plasma becomes high, with the result that the motion of the reactive ions in the plasma becomes more active. Accordingly, a velocity vector in a horizontal direction of the reactive ions becomes larger, which enables efficient removal or change in quality of the contaminants sticking on the sidewalls of the pattern or the trench.
摘要:
A plasma etching apparatus comprises a chamber, a holding table for holding samples, such as a semiconductor substrate to be etched, in the chamber, a plasma-generating device for generating a plasma within the chamber, and a magnetic-field-forming device which forms a magnetic field perpendicular to the surface of the sample placed on the holding table and parallel the inner wall of the chamber.
摘要:
A method for anisotropically etching a substrate to be treated using plasma of a reactive gas produced by electron cyclotron resonance is disclosed. A substrate to be treated is located in a processing container, and a chlorine gas and a hydrogen chloride gas are introduced into the processing container. From the mixture of the chlorine and hydrogen chloride gases introduced into the processing container, plasma of the mixed gas is produced by electron cyclotron resonance. According to this method, the energy of the plasma of chlorine is taken by the plasma of H.sup.+, which results in a decrease in kinetic energy of the chlorine. As a result, the plasma of chlorine impinges vertically to the substrate to be treated along the sheath electric field. Consequently, etching with strong anisotropic property is enabled.
摘要:
A method of cleaning a surface including generating helium ions, electrons, and metastable helium by exciting helium gas, separating said metastable helium from the helium ions and electrons, and exposing a substance to be processed on the surface of which foreign matter is present to the metastable helium separated from the helium ions and electrons to remove the foreign matter from the substance.
摘要:
An apparatus for cleaning a surface includes first and second reaction containers, a holding apparatus for holding, in the second reaction container, a substance to be processed on the surface of which foreign matter is present, an apparatus for supplying helium gas into the first reaction container, an apparatus for generating helium ions, electrons, and metastable helium by exciting helium gas in the first reaction container, and an apparatus for separating the metastable helium generated in the first reaction container and for introducing the metastable helium into the second reaction container.
摘要:
An apparatus for treating semiconductor wafers utilizing a plasma generated by electron cyclotron resonance (ECR) is disclosed in which a microwave is supplied to a plasma generating chamber via a rectangular waveguide, a rectangular-to-circular microwave converter, and a circular polarization converter. The polarization converter may comprise a phase shift plate of a dielectric material or an electrically conductive material disposed in a circular waveguide in the form of a metallic cylinder. The polarization converter transforms a circular TE.sub.11 mode microwave supplied from the rectangular-to-circular microwave converter to a circularly polarized one by rotating the direction of the electric field of the microwave in the TE.sub.11 mode one complete turn in one period of the microwave. Thus, the electric field strength of the microwave supplied to the plasma generating chamber is averaged over the time along the circumferential direction in the plasma generating chamber to make the density of plasma generation therein spatially uniform. The spatially uniformly distributed plasma generated in the plasma generating chamber is conveyed to the wafer in the wafer treating chamber to effect a treatment of the wafer.
摘要:
A contact hole having an opening diameter smaller than the minimum dimension that can be formed by photolithographic technique is formed. Using an interlayer insulating film 8 formed on a semiconductor substrate as an etching mask, etching is carried out halfway to form an opening 8a. The etching mask is removed, and a TEOS film 10 is formed on the interlayer oxide film 8. The whole surface is then etched anisotropically to form a contact hole 11.
摘要:
A contact hole having an opening diameter smaller than the minimum dimension that can be formed by photolithographic technique is formed. Using an interlayer insulating film 8 formed on a semiconductor substrate as an etching mask, etching is carried out halfway to form an opening 8a. The etching mask is removed, and a TEOS film 10 is formed on the interlayer oxide film 8. The whole surface is then etched anisotropically to form a contact hole 11.
摘要:
In the first step, a silicon oxide film (21) on a silicon surface (22) is etched away using a CHF.sub.3 gas. After the silicon oxide film is removed, organic matter (23) of the C.sub.x F.sub.y group remains on the silicon surface. In the second step, the organic matter (23) is etched away using a NF.sub.3 gas. The silicon oxide film (21) is etched in preference to underlying silicon (22) by using the CHF.sub.3 gas. A F radical is easily formed from the NF.sub.3 gas used for removing the organic matter (23). At the time of forming this F radical, no residue is formed which makes the silicon surface (22) dirty. Consequently, a clear silicon surface (22) is obtained.