Abstract:
A resonant sensor includes a mover that is movable in a first direction, a supporter that extends in a second direction perpendicular to the first direction, the supporter being connected to the mover and a fixer, the supporter supporting the mover which is movable in the first direction, and a resonator that is vibratable, at least a part of the resonator being embedded in the supporter.
Abstract:
A resonant transducer includes a resonant beam which is formed on a semiconductor substrate, a support beam of which one end is connected to a part of the resonant beam at a predetermined angle, a first electrode which is connected to the resonant beam via the support beam, a second electrode which is disposed adjacent to a center of one side surface of the resonant beam, and a conductor which is disposed between the support beam and the second electrode, the conductor being connected to the first electrode.
Abstract:
A sensor includes a first structure that is attachable to a measurement specimen, a second structure that is made of material which is smaller in thermal expansion coefficient than the first structure, a bottom surface of the second structure being connected to the first structure, and a detector that is connected to an upper surface of the second structure, the detector being configured to detect a deformation of the second structure.
Abstract:
A current-to-voltage conversion circuit according to one aspect of the present invention includes a first resistor, a first current source, a first capacitor, a first output terminal, a first voltage source, a first transistor, and a second resistor. The first resistor includes a first end and a second end. The first end of the first resistor is connectable to an electrode included in a sensor and the second end of the first resistor is connected to a first electrical potential. The first capacitor includes a first end and a second end. The first end of the first capacitor is connected to the first end of the first resistor and the second end of the first capacitor is connected to the first current source. The first transistor includes a first terminal, a second terminal, and a control terminal. The first terminal is connected to the second end of the first capacitor, the second terminal is connected to the first output terminal, and the control terminal is connected to the first voltage source. The second resistor includes a first end connected to the second terminal and a second end connected to a second electrical potential.
Abstract:
A resonant transducer includes a silicon single crystal substrate, a silicon single crystal resonator disposed over the silicon single crystal substrate, a shell made of silicon, surrounding the resonator with a gap, and forming a chamber together with the silicon single crystal substrate, an exciting module configured to excite the resonator, a vibration detecting module configured to detect vibration of the resonator, a first layer disposed over the chamber, the first layer having a through-hole over the resonator, a second layer disposed over the first layer, the second layer covering a gap being positioned above the through-hole and being communicated with the through-hole, and a third layer covering the first layer and the second layer, and the third layer sealing the gap.
Abstract:
A method of manufacturing a resonant transducer having a vibration beam includes: (a) providing an SOI substrate including: a first silicon layer; a silicon oxide layer on the first silicon layer; and a second silicon layer on the silicon oxide layer; (b) forming a first gap and second gap through the second silicon layer by etching the second silicon layer using the silicon oxide layer as an etching stop layer; (c) forming an impurity diffusion source layer on the second silicon layer; (d) forming an impurity diffused layer in a surface portion of the second silicon layer; (e) removing the impurity diffusion source layer through etching; and (f) removing at least a portion of the silicon oxide layer through etching such that an air gap is formed between the first silicon layer and a region of the second silicon layer surrounded by the first and second gaps.
Abstract:
A resonant pressure sensor includes a first substrate and a resonator. The first substrate includes a diaphragm and a projection disposed on the diaphragm. The resonator is disposed in the first substrate, a part of the resonator being included in the projection, and the resonator being disposed between a top of the projection and an intermediate level of the first substrate. The first substrate is an SOI substrate in which a silicon dioxide layer is inserted between a silicon substrate and a superficial silicon layer. The intermediate level of the first substrate is disposed in the silicon substrate, and the resonator is disposed in the projection included in the superficial silicon layer.
Abstract:
A resonant transducer includes a silicon single crystal substrate, a silicon single crystal resonator disposed over the silicon single crystal substrate, a shell made of silicon, surrounding the resonator with a gap, and forming a chamber together with the silicon single crystal substrate, an exciting module configured to excite the resonator, a vibration detecting module configured to detect vibration of the resonator, a first layer disposed over the chamber, the first layer having a through-hole, a second layer disposed over the first layer, a third layer covering the first layer and the second layer, and a projection extending from the second layer toward the resonator, the projection being spatially separated from the resonator, the projection being separated from the first layer by a first gap, the second layer being separated from the first layer by a second gap, the first gap is communicated with the second gap.
Abstract:
A resonant transducer includes a resonator, a resonator electrodes connected to an end part of the resonator, at least one fixed electrode arranged in the vicinity of the resonator, and a buried part formed between the fixed electrode and the resonator electrode. The resonator, the resonator electrodes and the fixed electrode are formed by the same active layer on a substrate.