Abstract:
A control apparatus for an AC electric motor vehicle including a converter that converts an AC voltage input from an AC overhead wire via a transformer into a DC voltage, an inverter that converts the DC voltage into an AC voltage, and a motor that is driven and controlled by the inverter includes: torque-command calculating units that calculate a torque command value of the motor and output the torque command value to the inverter; and a static inverter that supplies electric power to a load mounted on the AC electric motor vehicle.
Abstract:
A hydrocarbon fueled hydrogen generator and hydrogen fueled electric power generating system and apparatus comprising hydrocarbon fuel and oxidizer delivery and mixing apparatus, ignition and combustion apparatus igniting the mixture of fuel and oxidizer, apparatus receiving and conducting the gases of combustion through a sulfur absorbing unit and removing sulfur from the gases, a steam reformer unit reforming carbon monoxide gas into hydrogen gas and carbon dioxide gas, a carbon monoxide scavenger unit reforming residual carbon monoxide gas to hydrogen gas and carbon dioxide gas; apparatus receiving the hydrogen gas and carbon dioxide gas and operating to liquefy and separate the carbon dioxide gas from the hydrogen gas; and, structure to hold and deliver the liquid carbon dioxide to useful end; and structure to hold and deliver hydrogen gas to the anode of a hydrogen fueled electric power generating fuel cell.
Abstract:
A method is disclosed for distributing energy in an electric vehicle including at least one electric energy store and at least one conditioning module, which can be used to generate electric energy from fuel, as energy sources, wherein driving-related information, or information about a state of the electric vehicle, is recorded before driving, or when beginning to drive, the electric vehicle and, while driving, energy is distributed in the vehicle on the basis of the information.
Abstract:
A configurable energy management system for recharging an electric vehicle. An in-vehicle renewable energy source generates electrical energy for recharging an in-vehicle energy storage device. The at least one off-vehicle renewable energy source provides electrical energy to the vehicle for recharging the in-vehicle energy storage device. A vehicle communication module transmits and receives data. An integration module integrates in-vehicle energy parameter data, in-vehicle renewable energy parameter data, off-vehicle renewable energy parameter data, user parameter data, and web-based data. A user interface device communicates user parameter data to the integration module. The user parameter data includes a prioritization of preferential parameters in re-charging the in-vehicle energy storage device. The integration module identifies an optimal energy source for re-charging the vehicle based on the in-vehicle energy parameter data, in-vehicle renewable energy parameter data, off-vehicle renewable energy parameter data, user parameter data, and the web-based data.
Abstract:
In combination with the ground vehicle A powered by a waste heat generating electric motor 16, a cooling system 10 including a generator 17 for driving off refrigerant vapor from a strong refrigerant-absorbant solution, including a solar collector 12, an air-cooled condenser 30 connected with the generator for converting the refrigerant vapor to its liquid state, an air-cooled evaporator 38 connected with the condenser for returning the liquid refrigerant to its vapor state, and an absorber 18 is connected to the generator and to the evaporator for dissolving the refrigerant vapor in the weak refrigerant-absorbant solution, for thus providing a strong refrigerant solution, a pump 22 for establishing a pressurized flow of strong refrigerant-absorbant solution from said absorber through the electric motor, and thence to the collector.
Abstract:
A vehicle power supply control device includes trunk line units of two systems provided in a vehicle; branch line units branched from the trunk line units of two systems; a vehicle power supply master coupled to one side of the trunk line units of two systems and includes a main battery that charges and discharges electric power; and a plurality of area power supply masters coupled to the trunk line units of two systems via the branch line units, coupled to a load that consumes electric power, and each include an area battery that charges and discharges electric power. The vehicle power supply master supplies electric power of the main battery to the area power supply masters via the trunk line units of two systems, and the area power supply masters supply, to the load, electric power supplied from the vehicle power supply master or charged in the area battery.
Abstract:
A power supply system for an electric vehicle includes a battery module, a first DC/DC converter, a second DC/DC converter, a first switch, a second switch and a third switch. The battery module has a negative electrode, a first positive electrode and a second positive electrode. The first DC/DC converter has an input terminal connected with the second positive electrode. The second DC/DC converter has an input terminal connected with the second positive electrode. The first switch is connected between the second positive electrode and the first DC/DC converter. The second switch is connected between the second positive electrode and the second DC/DC converter. The third switch is connected between the first positive electrode and an output terminal of the second DC/DC converter.
Abstract:
A method is disclosed for distributing energy in an electric vehicle including at least one electric energy store and at least one conditioning module, which can be used to generate electric energy from fuel, as energy sources, wherein driving-related information, or information about a state of the electric vehicle, is recorded before driving, or when beginning to drive, the electric vehicle and, while driving, energy is distributed in the vehicle on the basis of the information.
Abstract:
A configurable energy management system for recharging an electric vehicle. An in-vehicle renewable energy source generates electrical energy for recharging an in-vehicle energy storage device. The at least one off-vehicle renewable energy source provides electrical energy to the vehicle for recharging the in-vehicle energy storage device. A vehicle communication module transmits and receives data. An integration module integrates in-vehicle energy parameter data, in-vehicle renewable energy parameter data, off-vehicle renewable energy parameter data, user parameter data, and web-based data. A user interface device communicates user parameter data to the integration module. The user parameter data includes a prioritization of preferential parameters in re-charging the in-vehicle energy storage device. The integration module identifies an optimal energy source for re-charging the vehicle based on the in-vehicle energy parameter data, in-vehicle renewable energy parameter data, off-vehicle renewable energy parameter data, user parameter data, and the web-based data.
Abstract:
A heater system for a vehicle has an internal combustion engine fluidly connected to a fuel tank by a fuel line for delivering fuel from the fuel tank to the engine. The heater system includes an in-line heater disposed along the fuel line between the fuel tank and the internal combustion engine for heating fuel within the fuel line. A power cord is operatively connected to the in-line heater for providing electrical power thereto. The power cord has a distal end configured to removably connect to an external power source and a length sufficient to reach the external power source.