Abstract:
A process for obtaining a material including a glass sheet, includes providing a glass sheet including a first face coated at least partly by an essentially mineral first coating, the face having at least one first zone and at least one second zone, the at least one first zone having a higher emissivity than that of the second zone, then applying, on at least one portion of the second zone, a sacrificial layer including a resin, then heat treating the coated glass sheet at a temperature of at least 550° C., during which step the sacrificial layer is removed by combustion.
Abstract:
In one example, a method to manufacture a magnetic sensor, comprises providing an electrolyte solution, submersing a substrate in the electrolyte solution, submersing a plurality of ingots in the electrolyte solution, wherein the ingots comprises a metal that is magnetic, and depositing the metal on the substrate by applying a voltage between the metal ingot and the substrate to result in magnetic alloy layer on the substrate. Other examples and related methods are also disclosed herein.
Abstract:
A method for manufacturing a quartz glass substrate with a coating formed includes: surface roughening for a base surface of the quartz glass substrate, on which the sprayed coating is formed; and a heating treatment of heating the substrate after the surface roughening. The base surface is 0.9 μm or more and 5.0 μm or less in arithmetic mean roughness (Ra) in the surface roughening. The heating treatment is performed at a temperature that is equal to or higher than a strain point (temperature at which the viscosity reaches 1013.5 Pa·sec) of the quartz glass.
Abstract:
A synthetic quartz glass lid for use in optical device packages is prepared by furnishing a synthetic quartz glass lid precursor comprising a synthetic quartz glass substrate (1) and a metal or metal compound film (2), and forming a metal base adhesive layer (3) on the metal or metal compound film (2). The metal or metal compound film contains Ag, Bi, and at least one element selected from P, Sb, Sn and In.
Abstract:
The present invention discloses a method for electroless plating of a metal or metal alloy onto a metal or a metal alloy structure comprising a metal such as molybdenum or titanium and alloys containing such metals. The method comprises the steps of activation, treatment in an aqueous solution comprising at least one nitrogen-containing compound or a hydroxy carboxylic acid and electroless plating of a metal or metal alloy.
Abstract:
A method for producing a reflector on a reflector base made of glass is provided. According to the method, a metal-containing coating fluid is deposited on a coating surface and subjected to a burning-in treatment at a temperature below a softening temperature of the glass forming the reflector layer. Deposition of the coating fluid proceeds using a contactless method by inkjet technology. This makes it possible to deposit a reflector layer in a reproducible way and with tight tolerances having a specified layer thickness, as well as to create clean edges without a printing block or similar device. The coating fluid is moved by a print head equipped with a plurality of nozzles and is movable in a movement plane relative to the coating surface. The coating fluid is sprayed onto the coating surface by the print head under pressure and in the form of droplets emerging from the nozzles.
Abstract:
A coated glass article and of a system and method for forming a coated glass article are provided. The process includes applying a first coating precursor material to the first surface of the glass article and supporting the glass article via a gas bearing. The process includes heating the glass article and the coating precursor material to above a glass transition temperature of the glass article while the glass article is supported by the gas bearing such that during heating, a property of the first coating precursor material changes forming a coating layer on the first surface of the glass article from the first precursor material. The high temperature and/or non-contact coating formation may form a coating layer with one or more new physical properties, such as a deep diffusion layer within the glass, and may form highly consistent coatings on multiple sides of the glass.
Abstract:
A composition for forming a conductive film includes at least one of a metal salt (A1) and a metal particle (A2) as component (A) that serves as a metal source of the conductive film, and a metalloxane compound (B). The metal salt (A1) and the metal particle (A2) contain one or more metals selected from the group consisting of Ni, Pd, Pt, Cu, Ag, and Au. The metalloxane compound (B) has at least one metal atom selected from the group consisting of Ti, Zr, Sn, Si, and Al in its main chain. Preferably, the metal salt (A1) is a carboxylate containing a metal selected from the group consisting of Cu, Ag, and Ni. Preferably, the metal particle (A2) has an average particle diameter of 5 nm to 100 nm and comprises a metal selected from the group consisting of Cu, Ag, and Ni.
Abstract:
The invention relates to a mixture containing a gold thiolate, a rhodium(III) compound, and a solvent that contains at least one OH group, in which the mixture has a ratio V=(a)/(b)≧2.2; (a) is the fraction of solvent and (b) is the gold fraction of the gold thiolate, each relative to the total weight of the mixture.
Abstract:
A method of metallizing the surface of a substrate electrolessly, by spraying one or more oxidation-reduction solutions thereonto. The steps of this method include: a) physical or chemical treatment to reduce the surface tension of the substrate before metallization; b) electroless metallization of the surface of the substrate treated in step a), by spraying one or more oxidation-reduction solutions in the form of one or more aerosols thereonto; and c) formation of a top coat on the metallized surface. Compact devices for implementing this method and the products obtained are also disclosed.