Abstract:
The disclosure relates to a light irradiation device which can improve curability of photo-curable materials. A light irradiation device includes a first supply section having a porous portion, the first supply section being capable of supplying a gas to a photo-curable material through the porous portion; and an irradiation section disposed in alignment with the porous portion or disposed downstream from the porous portion, the irradiation section being capable of irradiating the photo-curable material with light.
Abstract:
A device includes a case having a surface with a perforation and a cavity. A membrane is supported by the case inside the cavity and has an impermeable valve plate positioned proximate the perforation. The membrane is water vapor permeable and gas impermeable and flexes responsive to a difference in pressure between the cavity and outside the cavity to selectively allow water vapor to pass through the perforation into the cavity as a function of the difference in pressure.
Abstract:
An arrangement for a direct methanol fuel cell includes a fuel cartridge that supplies a source of fuel to the direct methanol fuel cell. The fuel cartridge has a surface area enhanced planar vaporization membrane residing in the fuel cartridge. The arrangement also includes a fuel reservoir that receives fuel from the fuel cartridge, the fuel reservoir arranged to deliver fuel to the fuel cell. The fuel reservoir also including a surface area enhanced planar vaporization membrane residing in the fuel reservoir. The combination of the surface area enhanced planar vaporization membranes residing in the fuel cartridge and reservoir provides a dual stage vaporization of fuel to the fuel cell. Other features included are passive or active arrangements to increase the temperature of the fuel or reduce pressure in the fuel container to enhance rate of vaporization.
Abstract:
A process as been found for the removal of water from reaction mixtures of acids or acid anhydrides or of aqueous alkali metal hydroxide solutions with alcohols using vapor permeation/pervaporation at the boiling point of the reaction mixture, which includes initially introducing the lowest-boiling educt in less than the stoichiometric amount, based on the other particular educt, together with this other educt, heating the reaction mixture to the boiling point and freeing the vapor mixture, which is formed from the boiling reaction mixture and includes chiefly water and the lowest-boiling component, from water on a membrane, recycling the vapor mixture which has been freed from water into the reaction mixture and topping up the reaction mixture with the lowest-boiling educt in the course of the reaction.
Abstract:
A clog-resistant inlet structure for introducing a particulate solids-containing and/or solids-Forming gas stream to a gas processing system. The structure is composed of a gas-permeable wall enclosing a gas flow path, and an outer annular jacket circumscribing the gas-permeable wall to define an annular gas reservoir therebetween. The clog-resistant inlet structure is constructed, arranged, and operated so as to introduce a gas into the annular gas reservoir during the flow of the particulate solids-containing and/or solids-forming gas stream to a gas processing system through such inlet structure at a pressure sufficient to combat the deposition or formation of solids on the interior surface of the gas-permeable wall. The inlet structure may further optionally include a downstream annular section in which the wall surface bounding the gas stream is blanketed with a falling liquid film, to combat solids deposition or formation on the blanketed wall surface.
Abstract:
An apparatus for conveying a process gas stream from an upstream source to a downstream treatment unit, including a manifold receiving gas from the upstream source, including first and second valved inlet lines which are alternatingly employed to flow gas to a downstream process. The manifold is arranged so that one of such lines is actively flowing gas from the upstream source to the downstream process, while the other is blocked by closure of the valve therein and is undergoing regeneration. A pressurized water source is coupled with the manifold, by valved water flow lines to each of the first and second inlet lines, with the water flow line valves being selectively openable or closeable to establish or discontinue flow of pressurized water therethrough, respectively. Cycle timer control means are employed to control the operation of the manifold and valves, for water cleaning of the off-stream inlet line.
Abstract:
A compact, continuous-flow synthesis device for the production of dimeric hydrocarbon species by reacting unsaturated hydrocarbons such as alkenes and alkynes with atomic hydrogen or free radicals generated by the dissociation of molecular hydrogen or organics such as alkanes. The dissociation is carried out in a module either by the electric discharge between a pair of parallel, annular, flat disc, high-voltage electrodes or by the radiation between a pair of parallel, toroidal ultraviolet lamps. The reactant to be dissociated flows radially inward from the module periphery between the pair of electrodes or the pair of ultraviolet lamps, and reaches the axis of the annulus or torus in the dissociated state. Unsaturated hydrocarbons in the dispersed phase injected vertically down this axis react with the dissociated species in a collision chamber surrounding the dissociation module to form residual free radicals. Cooling the residual free radicals then converts them to condensed dimeric products in a collection basin adjacent to the collision chamber. Many dimeric species, such as 2,2,3,3-tetramethylbutane, can be produced from different starting materials. The device also generates dimeric products from the reaction of free radicals alone in the absence of unsaturated hydrocarbons.
Abstract:
An electrochemical process for producing unsaturated hydrocarbon compounds from unsaturated hydrocarbon compounds and for extracting oxygen from a gas containing N.sub.2 O, NO, NO.sub.2, SO.sub.2, or SO.sub.3 is described. The process is characterized by the use of mixed metal oxide materials having a perovskite structure represented by the formula: A.sub.s A'.sub.t B.sub.u B'.sub.v B".sub.w O.sub.x wherein A represents a lanthanide or Y, or a mixture thereof; A' represents an alkaline earth metal or a mixture thereof; B represents Fe; B' represents Cr or Ti, or a mixture thereof; and B" represents Mn, Co, V, Ni, or Cu, or a mixture thereof.
Abstract:
The invention relates to a process for the partial oxidation of C.sub.1 to C.sub.4 hydrocarbons, using novel membranes formed from perovskitic or multi-phase structures, with a chemically active coating which demonstrate exceptionally high rates of fluid flux. The process uses membranes that are conductors of oxygen ions and electrons, which are substantially stable in air over the temperature range of 25.degree. C. to the operating temperature of the membrane.
Abstract:
A separation capillary in a capillary electrophoresis apparatus is less than 20 microns high to restrict the flow velocity profile of the EOF to being substantially parabolic. The capillary is preferably rectangular with an aspect ratio of at least 2:1, and preferably at least 10:1, in order to increase bulk flow. Hydrostatic back pressure is applied to the capillary to reduce or cancel the EOF. The back pressure is preferably at least 50% as strong as the forward-directed EOF in order to reduce EOF, and thereby to increase resolution.