Abstract:
A silicone hyper-branched polymer surfactant is included in a rinsing solution which may be used to remove photoresist residues. The silicone hyper-branched polymer surfactant is prepared by polymerizing a monomer represented by the following chemical formula (1), where R1 denotes a vinyl group and R2 denotes hydrogen, and includes both a hydrophobic group and a hydrophilic group. 1
Abstract:
An olefin polymerization process and apparatus wherein a fluid slurry comprising monomer, diluent and catalyst is circulated in a continuous loop reactor by two or more pumps. The process and apparatus allow operating the reaction at significantly higher solids content in the circulating fluid slurry. In a preferred embodiment, the fluid slurry is circulated by two impellers arranged so that the downstream impeller benefits from the rotational energy imparted by the upstream impeller. An olefin polymerization process operating at higher reactor solids by virtue of more aggressive circulation has improved efficiencies, particularly in larger-volume reactors.
Abstract:
The present invention relates to a nozzle for the injection of a liquid under pressure (3), comprising a vertical feed pipe (1) surmounted by a hollow head (3), the liquid under pressure being conducted between the outer wall (4) of the vertical feed pipe (1) and an inner tube (5), the upper part of the nozzle comprising at least one lateral orifice (6) for expelling the liquid under pressure (3). This nozzle is characterized in that the upper end of the inner tube (5) of the vertical feed pipe (1) emerges at a height above the lateral orifice(s) (6), thereby making it possible, when stopping the injection of the liquid under pressure (3), to introduce a gas under pressure (8) via the inner tube (5) of the vertical feed pipe (1). which generates an overpressure in the upper part of the nozzle in order, on the one hand, to lower the level of the liquid (9) under pressure (3) below the lateral orifice(s) (6) and, on the other hand, to prevent any backflow of solids, liquids and/or gases, from the medium into which the liquid under pressure (3) is injected. towards the inside of the nozzle.
Abstract:
An olefin polymerization process wherein monomer, diluent and catalyst are circulated in a continuous loop reactor and product slurry is recovered by means of a continuous product take off. The continuous product allows operating the reaction at significantly higher solids content in the circulating slurry. In a preferred embodiment, the slurry is heated in a flash line heater and passed to a high pressure flash where a majority of the diluent is separated and thereafter condensed by simple heat exchange, without compression, and thereafter recycled. Also an olefin polymerization process operating at higher reactor solids by virtue of more aggressive circulation.
Abstract:
The present invention teaches the use of particular soluble metallocene catalysts to produce stereoregular polymers in gas phase polymerizations wherein the catalysts are fed into a particle lean zone in the reactor. The metallocenes catalysts are bridged bis-(substituted indenyl) compounds.
Abstract:
An olefin polymerization process wherein monomer, diluent and catalyst are circulated in a continuous loop reactor and product slurry is recovered by means of a continuous product take off. The continuous product allows operating the reaction at significantly higher solids content in the circulating slurry. In a preferred embodiment, the slurry is heated in a flash line heater and passed to a high pressure flash where a majority of the diluent is separated and thereafter condensed by simple heat exchange, without compression, and thereafter recycled. Also an olefin polymerization process operating at higher reactor solids by virtue of more aggressive circulation.
Abstract:
A process for preparing highly branched ethylene polymers comprises polymerizing ethylene over a catalyst system comprising a compound of the formula Ia or Ib 1 and an activator, where the process is carried out at from 40 to 110null C. and a pressure of from 10 to 100 bar.
Abstract:
A continuous vapor-phase fluidized-bed process for the preparation of ethylene homopolymers and copolymers having a density of from 0.87 to 0.97 g/cm3 in which ethylene or mixtures of ethylene and C3-C8 a-monoolefins are (co)polymerized in the presence of a supported chromium catalyst in the polymerization zone of a vapor-phase fluidized-bed reactor under pressures ranging from 1 to 100 bar and at temperatures ranging from 30null to 125null C. in the vapor phase in an agitated bed of bulk material comprising particulate polymer, the resultant heat of polymerization is removed by cooling the recirculated reactor gas and the resulting (co)polymer is removed from the vapor-phase fluidized-bed reactor, wherein, for the preparation of a (co)polymer of a specific density d, the (co)polymerization is carried out at a temperature which is in a range restricted by an upper envelope defined by equation I 1 T H = 171 + 6 null null null d null 0.84 - d null ( I ) and a lower envelope defined by equation II 2 T L = 173 + 7.3 null null null d null 0.837 - d null , ( II ) in which the variables have the following meanings: TH is the highest reaction temperature in null C.; TL is the lowest reaction temperature in null C.; dnull is the numerical value of the density d of the (co)polymer to be synthesized.
Abstract:
A method of modifying a polymeric material which comprises the steps of activation-treatment and a hydrophilic polymer-treatment, or comprises the steps of activation-treatment, a hydrophilic polymer-treatment, and monomer grafting in this order, or comprises the step of a solvent-treatment followed by these steps. Thus, the polymeric material, e.g., polyolefin, is improved in hydrophilicity, adhesion, etc. without lowering the practical strength thereof The polymeric material thus improved in adhesion and other properties can be used in many applications where water absorption and adhesion are required, such as an absorption material, e.g., a wiping/cleansing material, a water retention material, a material for microorganism culture media, a separator for batteries (or cells), a synthetic paper, a filter medium, a textile product for clothing, a medical/sanitary/cosmetic supply, and reinforcing fibers for composite materials.
Abstract:
An olefin polymerization process wherein monomer, diluent and catalyst are circulated in a continuous loop reactor and product slurry is recovered by means of a continuous product take off. The continuous product allows operating the reaction at significantly higher solids content in the circulating slurry. Also an olefin polymerization process operating at higher reactor solids by virtue of more aggressive circulation. The fluid slurry is circulated in the loop reaction zone with a pump providing a pressure differential of at least 18 psi.