Abstract:
A bipolar high voltage/power semiconductor device has a low voltage terminal and a high voltage terminal. The device has a drift region of a first conductivity type and having first and second ends. In one example, a region of the second conductivity type is provided at the second end of the drift region connected directly to the high voltage terminal. In another example, a buffer region of the first conductivity type is provided at the second end of the drift region and a region of a second conductivity type is provided on the other side of the buffer region and connected to the high voltage terminal. Plural electrically floating island regions are provided within the drift region at or towards the second end of the drift region, the plural electrically floating island regions being of the first conductivity type and being more highly doped than the drift region.
Abstract:
A high voltage/power semiconductor device has at least one active region having a plurality of high voltage junctions electrically connected in parallel. At least part of each of the high voltage junctions is located in or on a respective membrane such that the active region is provided at least in part over plural membranes. There are non-membrane regions between the membranes. The device has a low voltage terminal and a high voltage terminal. At least a portion of the low voltage terminal and at least a portion of the high voltage terminal are connected directly or indirectly to a respective one of the high voltage junctions. At least those portions of the high voltage terminal that are in direct or indirect contact with one of the high voltage junctions are located on or in a respective one of the plural membranes.
Abstract:
A silicon carbide semiconductor device includes: a semiconductor substrate including a base substrate, a first semiconductor layer, a second semiconductor layer and a third semiconductor layer, which are laminated in this order; a cell portion disposed in the semiconductor substrate and providing an electric part forming portion; and a periphery portion surrounding the cell portion. The periphery portion includes a trench, which penetrates the second and the third semiconductor layers, reaches the first semiconductor layer, and surrounds the cell portion so that the second and the third semiconductor layers are divided by the trench substantially. The periphery portion further includes a fourth semiconductor layer disposed on an inner wall of the trench.
Abstract:
A power semiconductor device has an active region that includes a drift region. At least a portion of the drift region is provided in a membrane which has opposed top and bottom surfaces. In one embodiment, the top surface of the membrane has electrical terminals connected directly or indirectly thereto to allow a voltage to be applied laterally across the drift region. In another embodiment, at least one electrical terminal is connected directly or indirectly to the top surface and at least one electrical terminal is connected directly or indirectly to the bottom surface to allow a voltage to be applied vertically across the drift region. In each of these embodiments, the bottom surface of the membrane does not have a semiconductor substrate positioned adjacent thereto.
Abstract:
A silicon carbide semiconductor device includes: a semiconductor substrate including a base substrate, a first semiconductor layer, a second semiconductor layer and a third semiconductor layer, which are laminated in this order; a cell portion disposed in the semiconductor substrate and providing an electric part forming portion; and a periphery portion surrounding the cell portion. The periphery portion includes a trench, which penetrates the second and the third semiconductor layers, reaches the first semiconductor layer, and surrounds the cell portion so that the second and the third semiconductor layers are divided by the trench substantially. The periphery portion further includes a fourth semiconductor layer disposed on an inner wall of the trench.
Abstract:
An insulated gate field effect device (1a,1b,1c,1d) has a semiconductor body (2) with a first region (3) of one conductivity type, a second region (4) of the opposite conductivity type, a third region (6) of the one conductivity type (7) separated from the first region (3) by the second region (4) and at least one injector region (8) for injecting charge carriers of the opposite conductivity type into the first region (3). The conduction channel area (40) adjoining the insulated gate (9, 10) has first and second subsidiary areas (40 and 40b) for providing respective first and second subsidiary conduction channels. The second subsidiary area (40b) is spaced from the third region (6) and is more lowly doped than the first subsidiary conduction channel area (40a) for causing, when the injected opposite conductivity current type reaches a given value, the pn junction (40b') between the second subsidiary channel (40b ) and the second region (4) to become forward-biassed causing the bipolar transistor formed by the second subsidiary channel (40b), the second region (4) and the first region (3) to conduct to initiate with the at least one injector region (8) thyristor action which ceases upon removal of the conduction channel.