Abstract:
In a plasma reactor having an electrostatic chuck, wafer voltage may be determined from RF measurements at the bias input using previously determined constants based upon transmission line properties of the bias input, and this wafer voltage may be used to accurately control the DC wafer clamping voltage.
Abstract:
Apparatus and methods are provided for a power matching apparatus for use with a processing chamber. In one aspect of the invention, a power matching apparatus is provided including a first RF power input coupled to a first adjustable capacitor, a second RF power input coupled to a second adjustable capacitor, a power junction coupled to the first adjustable capacitor and the second adjustable capacitor, a receiver circuit coupled to the power junction, a high voltage filter coupled to the power junction and the high voltage filter has a high voltage output, a voltage/current detector coupled to the power junction and a RF power output connected to the voltage/current detector.
Abstract:
Embodiments of the present invention provide methods and apparatus for analyzing thermal properties of bonding materials within a composite structure. One embodiment of the present invention provides an apparatus for analyzing thermal property of a bonding material within a structure. The apparatus comprises a structure support having a supporting surface configured to support the structure, a heat source configured to direct a heat flux to the structure supported by the supporting surface of the structure support, and a camera facing the structure supported on the structure support and configured to capture thermal images of the structure supported on the structure support.
Abstract:
A method is provided for processing a workpiece in a plasma reactor chamber. The method includes coupling, to a plasma in the chamber, power of an RF frequency via a ceiling electrode and coupling, to the plasma, power of at least approximately the same RF frequency via a workpiece support electrode. The method also includes providing an edge ground return path. The method further includes adjusting the proportion between (a) current flow between said electrodes and (b) current flow to the edge ground return path from said electrodes, to control plasma ion density distribution uniformity over the workpiece.
Abstract:
A plasma immersion ion implantation process for implanting a selected species at a desired ion implantation depth profile in a workpiece is carried out in a reactor chamber having a set of plural parallel ion shower grids that divide the chamber into an upper ion generation region and a lower process region, each of the ion shower grids having plural orifices in mutual registration from grid to grid, the plural orifices oriented in a non-parallel direction relative to a surface plane of the respective ion shower grid. The process includes placing a workpiece in the process region, the workpiece having a workpiece surface generally facing the surface plane of the closest one of the plural ion shower grids, and furnishing the selected species into the ion generation region. The process further includes evacuating the process region, and applying plasma source power to generate a plasma of the selected species in the ion generation region. The process also includes applying successive grid potentials to successive ones of the grids and applying a bias potential to the workpiece. The combination of the grid and bias potentials corresponds to the desired ion implantation depth profile in the workpiece.
Abstract:
A method and apparatus for removing excess dopant from a doped substrate is provided. In one embodiment, a substrate is doped by surfaced deposition of dopant followed by formation of a capping layer and thermal diffusion drive-in. A reactive etchant mixture is provided to the process chamber, with optional plasma, to etch away the capping layer and form volatile compounds by reacting with excess dopant. In another embodiment, a substrate is doped by energetic implantation of dopant. A reactive gas mixture is provided to the process chamber, with optional plasma, to remove excess dopant adsorbed on the surface and high-concentration dopant near the surface by reacting with the dopant to form volatile compounds. The reactive gas mixture may be provided during thermal treatment, or it may be provided before or after at temperatures different from the thermal treatment temperature. The volatile compounds are removed. Substrates so treated do not form toxic compounds when stored or transported outside process equipment.
Abstract:
A method is provided in plasma processing of a workpiece for stabilizing the plasma against engineered transients in applied RF power, by modulating an unmatched low power RF generator in synchronism with the transient.
Abstract:
A support for a substrate processing chamber comprises a chuck having a substrate receiving surface, and a base comprising an upper wall comprising a recessed trench having (i) an attachment face at a first depth, and (ii) a fluid channel at a second depth. A lower wall is seated in the recessed trench and attached to the attachment face of the upper wall, to close the fluid channel. A fluid inlet is provided to supply a heat transfer fluid to the fluid channel and a fluid outlet provided to discharge the heat transfer fluid from the fluid channel.
Abstract:
Described herein is a method and apparatus for diagnosing processing equipment with a multi-diagnostic device. In one embodiment, a multi-diagnostic device is located in a plasma processing environment and includes an electronic circuitry. The device includes a first array of sensors and a second array of sensors. The circuitry is used to simultaneously (or nearly simultaneously) measure the distributions of ion saturation current and the potential at the device using the first array of sensors and to measure resistances of the second array of sensors to determine the distribution of the temperature at the surface of the device.
Abstract:
A method of etching a low-k dielectric on, or removing resist from, a substrate. In the method, the substrate is placed in a process zone. An ionized gas is generated in a gas ionization zone above the process zone, by introducing a process gas into a gas ionization zone, maintaining the process gas at a pressure of less than about 0.1 mTorr, and coupling RF energy to the process gas to form an ionized gas. The ionized gas is passed through an ion filter to form a filtered ionized gas. The substrate is exposed to the filtered ionized gas to etch the low-k dielectric layer on the substrate or to remove or clean remnant resist on the substrate.