Abstract:
A novel semiconductor package comprises a rigid dielectric, e.g., ceramic, substrate having first and second portions joined to one another at respective margins thereof to form an angle, e.g., a right angle, between the portions. Each of the portions has electrically conductive paths connected to one another through the angle. A semiconductor device, e.g., a die, is mounted to the first portion and electrically connected to the conductive paths thereof. An array of electrically conductive lands, balls, or pins are mounted on the second portion for connecting the package to a printed circuit board. In a high-power embodiment, the device is mounted directly on a threaded stud projecting from the first portion to enable intimate thermal coupling of the device to a heat sink. In another embodiment, a connector projects from the first portion to optically couple an optical device directly to an end of a fiber optic cable.
Abstract:
To form a micromachine package, bond pads on a front surface of a controller chip are aligned with corresponding traces on a front surface of a micromachine chip. The bond pads are physically connected to the traces thus mounting the controller chip as a flip chip to the micromachine chip. A bead is formed around a periphery of the controller chip. The bead and the controller chip form an enclosure around a micromachine area in the front surface of the micromachine chip. This enclosure protects the micromachine area from the ambient environment.
Abstract:
A micromachine package includes a micromachine chip having a micromachine area in a front surface of the micromachine chip. The package further includes a controller chip having a rear surface and a front surface. Bond pads are on the front surface of the controller chip. A bead secures the rear surface of the controller chip to the front surface of the micromachine chip. By mounting the controller chip directly on the micromachine chip, the size of the package is minimized. Further, the bead and controller chip form an enclosure around the micromachine area. This enclosure protects the micromachine area from the ambient environment.
Abstract:
An image sensor package includes an image sensor having an upper surface. The image sensor further includes an active area and bond pads on the upper surface. A window is supported above the active area by a window support. A step up ring is mounted above a noncritical region of the upper surface of the image sensor between the active area and the bond pads. Electrically conductive traces on the step up ring are electrically connected to the bond pads by bond wires. An inner package body is formed between the step up ring and the window support and mechanically locks the window in place. An outer package body is formed to enclose the bond wires, the bond pads, and outer sides of the step up ring. The outer package body has outer sides coplanar with sides of the image sensor such that the image sensor assembly is chip size.
Abstract:
A structure comprises a substrate with electronic components formed on a first surface of the substrate. The structure includes a scribe line on a first surface of the substrate. The structure includes a trench formed by a laser on the second or back-side surface of the substrate, thus protecting the front-side surface of the substrate and, more particularly, the electronic component such as an integrated circuit and/or functional unit on the front-side surface of the substrate during singulation. Since, according to the invention, no saw blade is used, the width of the scribe line does not need to be any larger than the width of the beam from the laser plus some minimal tolerance for alignment. As a result, using the invention, the width of scribe line is on the order of twenty-four times smaller than the width of scribe lines required by the prior art methods.
Abstract:
The invention provides a manufacturing process for making chip-size semi-conductor packages (“CSPs”) at the wafer-level without the added size, cost, and complexity of substrates in the packages or the need to overmold them with plastic. One embodiment of the method includes the provision of a semiconductor wafer with opposite top and bottom surfaces and a plurality of dies integrally defined therein. Each die has an electronic device formed in a top surface thereof, and one or more electrically conductive vias extending therethrough that electrically connect the electronic device to the bottom surface of the die. The openings for the vias are formed ablatively with a laser and plated through with a conductive material. In a BGA form of the CSP, the vias connects the electronic device to lands on the bottom surface of the die. The lands may each have a bump of a conductive metal, e.g., solder, attached to it that functions as an input-output terminal of the CSP. When fabrication of the wafer is complete, the finished packages are singulated from the wafer using conventional wafer cutting techniques.
Abstract:
Electrically conductive interior traces and exterior traces are formed on interior and exterior surfaces, respectively, of a window. The interior traces are electrically connected to the exterior traces by electrically conductive vias extending through the window. To mount the window to an image sensor, the interior traces are aligned with bond pads on a front surface of the image sensor. Flip chip bumps are formed between the interior traces and the bond pads thus mounting the window to the image sensor. A sealer is applied to form a seal between the window and the image sensor and to protect an active area of the image sensor.
Abstract:
The present invention provides a method for reducing fouling, including particulate-induced fouling, in a hydrocarbon refining process including the steps of providing a crude hydrocarbon for a refining process; adding at least one polyalkyl succinic anhydride derivative additive disclosed herein. The additive can be complexed with a boronating agent, such as boric acid, to yield a boron-containing polyalkyl succinic anhydride derivative.
Abstract:
A compact electronic device may include a camera module having an image sensor. The image sensor may be controlled by storage and processing circuitry to capture image data from received light. The camera module may include a substrate having front and rear surfaces. The image sensor may be mounted to the rear surface of the substrate. The substrate may include optical focusing structures on the front surface of the substrate that focus light through an opening in the substrate to the image sensor. A flex circuit may be used to convey signals between the camera module and other electronic device components. The flex circuit may be mounted to the front surface of the camera module substrate to help reduce total height of the camera module. The flex circuit may be mounted to an extended portion of the substrate or may be mounted to surround the periphery of the image sensor.
Abstract:
A compact electronic device may include a camera module having an image sensor. The image sensor may be controlled by storage and processing circuitry to capture image data from received light. The camera module may include a substrate having front and rear surfaces. The image sensor may be mounted to the rear surface of the substrate. The substrate may include optical focusing structures on the front surface of the substrate that focus light through an opening in the substrate to the image sensor. A flex circuit may be used to convey signals between the camera module and other electronic device components. The flex circuit may be mounted to the front surface of the camera module substrate to help reduce total height of the camera module. The flex circuit may be mounted to an extended portion of the substrate or may be mounted to surround the periphery of the image sensor.