Abstract:
A semiconductor device includes a channel region; a gate dielectric over the channel region; a gate electrode over the gate dielectric; and a first source/drain region adjacent the gate dielectric. The first source/drain region is of a first conductivity type. At least one of the channel region and the first source/drain region includes a superlattice structure. The semiconductor device further includes a second source/drain region on an opposite side of the channel region than the first source/drain region. The second source/drain region is of a second conductivity type opposite the first conductivity type. At most, one of the first source/drain region and the second source/drain region comprises an additional superlattice structure.
Abstract:
A semiconductor device and method for fabricating a semiconductor device providing reduced short channel effects is disclosed. The method comprises providing a substrate comprising a first material; forming at least one gate stack over the substrate; forming one or more recesses in the substrate, wherein the one or more recesses define at least one source region and at least one drain region; and forming a pocket, a first layer comprising a second material, and a second layer comprising a third material in the one or more recesses, the pocket being disposed between the first layer and the substrate.
Abstract:
A CMOS device is provided. A semiconductor device comprises a substrate, the substrate having a first region and a second region, the first region having a first crystal orientation represented by a family of Miller indices comprising {i,j,k}, the second region having a second crystal orientation represented a family of Miller indices comprising {l,m,n}, wherein l2+m2+n2>i2+j2+k2. Alternative embodiments further comprise an NMOSFET formed on the first region, and a PMOSFET formed on the second region. Embodiments further comprise a Schottky contact formed with at least one of a the NMOSFET or PMOSFET.
Abstract:
A method of forming an epitaxial layer of uniform thickness is provided to improve surface flatness. A substrate is first provided and a Si base layer is then formed on the substrate by epitaxy. A Si—Ge layer containing 5 to 10% germanium is formed on the Si base layer by epitaxy to normalize the overall thickness of the Si base layer and the Si—Ge layer containing 5 to 10% germanium.
Abstract:
A semiconductor device comprises a semiconductor mesa overlying a dielectric layer, a gate stack formed overlying the semiconductor mesa, and an isolation spacer formed surrounding the semiconductor mesa and filling any undercut region at edges of the semiconductor mesa.
Abstract:
The major characteristic of the present invention lies in the adoption of electromagnetic means to translate the spin of a wheel module into continuous electrical signals. A permanent magnet is incorporated in the wheel module to provide magnetic field. Two sensors tangential to the spinning direction of the permanent magnet are used to detect the variations of the magnetic field from the spin of the wheel module in accordance with the Hall Effect.
Abstract:
The channels of first and second CMOS transistors can be selectively stressed. A gate structure of the first transistor includes a stressor that produces stress in the channel of the first transistor. A gate structure of the second transistor is disposed in contact with a layer of material that produces stress in the channel of the second transistor.
Abstract:
A printed circuit board substrate includes an insulation matrix and a waterproof layer. The insulation matrix includes a first surface and a second surface at an opposite side thereof to the first surface. The waterproof layer is formed in the insulation matrix and is arranged between the first surface and the second surface for blocking water from passing therethrough in a thicknesswise direction of the insulation matrix.
Abstract:
A BiCMOS device with enhanced performance by mechanical uniaxial strain is provided. A first embodiment of the present invention includes an NMOS transistor, a PMOS transistor, and a bipolar transistor formed on different areas of the substrate. A first contact etch stop layer with tensile stress is formed over the NMOS transistor, and a second contact etch stop layer with compressive stress is formed over the PMOS transistor and the bipolar transistor, allowing for an enhancement of each device. Another embodiment has, in addition to the stressed contact etch stop layers, strained channel regions in the PMOS transistor and the NMOS transistor, and a strained base in the BJT.
Abstract:
An exemplary method for manufacturing a printed circuit board is provided. In the method, firstly, a circuit substrate having a substrate and a number of soldering pads is provided. Secondly, a protective layer is formed onto the circuit substrate in a manner such that the soldering pads are entirely covered by the protective layer. Fourthly, a laser beam is applied onto portions of the protective layer spatially corresponding to the soldering pads in a manner such that the portions of the protective layer is removed, thereby exposing the soldering pads to an exterior. A printed circuit board having a protective layer with high precision of resolution is also provided.