摘要:
A technique for ion beam angle spread control is disclosed. In one particular exemplary embodiment, the technique may be realized as a method for ion beam angle spread control. The method may comprise directing one or more ion beams at a substrate surface at two or more different incident angles, thereby exposing the substrate surface to a controlled spread of ion beam incident angles.
摘要:
A technique for improving ion implantation throughput and dose uniformity is disclosed. In one exemplary embodiment, a method for improving ion implantation throughput and dose uniformity may comprise measuring an ion beam density distribution in an ion beam. The method may also comprise calculating an ion dose distribution across a predetermined region of a workpiece that results from a scan velocity profile, wherein the scan velocity profile comprises a first component and a second component that control a relative movement between the ion beam and the workpiece in a first direction and a second direction respectively, and wherein the ion dose distribution is based at least in part on the ion beam density distribution. The method may further comprise adjusting at least one of the first component and the second component of the scan velocity profile to achieve a desired ion dose distribution in the predetermined region of the workpiece.
摘要:
Techniques improving the performance and extending the lifetime of an ion source with gas mixing are disclosed. In one particular exemplary embodiment, the techniques may be realized as a method for improving performance and extending lifetime of an ion source in an ion implanter. The method may comprise introducing a predetermined amount of dopant gas into an ion source chamber. The dopant gas may comprise a dopant species. The method may also comprise introducing a predetermined amount of diluent gas into the ion source chamber. The diluent gas may dilute the dopant gas to improve the performance and extend the lifetime of the ion source. The diluent gas may further comprise a co-species that is the same as the dopant species.
摘要:
A method includes directing an ion beam at a plurality of differing incident angles with respect to a target surface of a substrate to implant ions into a plurality of portions of the substrate, wherein each one of the plurality of differing incident angles is associated with a different one of the plurality of portions, measuring angle sensitive data from each of the plurality of portions of the substrate, and determining an angle misalignment between the target surface and the ion beam incident on the target surface from the angle sensitive data. A method of determining a substrate miscut is also provided.
摘要:
A method of in-situ monitoring of a plasma doping process includes generating a plasma comprising dopant ions in a chamber proximate to a platen supporting a substrate. A platen is biased with a bias voltage waveform having a negative potential that attracts ions in the plasma to the substrate for plasma doping. A dose of ions attracted to the substrate is measured. At least one sensor measurement is performed to determine the condition of the plasma chamber. In addition, at least one plasma process parameter is modified in response to the measured dose and in response to the at least one sensor measurement.
摘要:
An approach that tunes an ion implanter for optimal performance is described. In one embodiment, there is a system for tuning an ion implanter having multiple beamline elements to generate an ion beam having desired beam properties. In this embodiment, the system comprises a beamline element settings controller configured to provide beamline element settings for generating the desired beam properties. A tuning model correlates the beamline element settings with beam properties. A calibration component is configured to calibrate the tuning model in response to a determination that beam properties measured from using the tuned beamline element settings differs from the determined tuned beamline element settings.
摘要:
A technique for ion beam angle spread control for advance applications is disclosed. In one particular exemplary embodiment, the technique may be realized as a method for ion beam angle spread control for advanced applications. The method may comprise directing one or more ion beams at a substrate surface at two or more different incident angles. The method may also comprise varying an ion beam dose associated with at least one of the one or more ion beams based at least in part on the two or more incident angles, thereby exposing the substrate surface to a controlled ion beam angle-dose distribution.
摘要:
A technique for ion beam angle spread control for advance applications is disclosed. In one particular exemplary embodiment, the technique may be realized as a method for ion beam angle spread control for advanced applications. The method may comprise directing one or more ion beams at a substrate surface at two or more different incident angles. The method may also comprise varying an ion beam dose associated with at least one of the one or more ion beams based at least in part on the two or more incident angles, thereby exposing the substrate surface to a controlled ion beam angle-dose distribution.
摘要:
A method for ion implantation of a substrate includes forming a plasma from at least one implant material comprising at least one implant species, implanting the at least one implant species into a surface of the substrate, and directing at least one surface-modifying species at the surface to reduce a surface damage associated with the plasma. An apparatus for ion implantation is configured to implement this method.
摘要:
Transmit amplitude independent adaptive equalizers are provided that compensate for transmission losses in an input signal when the transmit signal amplitude is unknown. Several embodiments are provided, including a first embodiment having an equalizer core, a controllable-swing slicer and an amplitude control loop, a second embodiment having an equalizer core, a fixed-swing slicer and a control loop, a third embodiment having an equalizer core, a variable gain amplifier, and a variable gain amplifier control loop, and a fourth embodiment having an equalizer core, a fixed-swing slicer, a variable gain amplifier, and a variable gain amplifier control loop.