摘要:
A semiconductor device structure and method for manufacture includes a substrate having a top first layer; a second thin transition layer located on top of the first layer; and, a third layer located on top of the transition layer, wherein the second thin transition layer provides strong adhesion and cohesive strength between the first and third layers of the structure. Additionally, a semiconductor device structure and method for manufacture includes an insulating structure comprising a multitude of dielectric and conductive layers with respective transition bonding layers disposed to enhance interfacial strength among the different layers. Further, an electronic device structure incorporates layers of insulating and conductive materials as intralevel or interlevel dielectrics in a back-end-of-the-line (“BEOL”) wiring structure in which the interfacial strength between different pairs of dielectric films is enhanced by a thin intermediate transition bonding layer.
摘要:
A method for fabricating a thermally stable ultralow dielectric constant film comprising Si, C, O and H atoms in a parallel plate chemical vapor deposition process utilizing plasma enhanced chemical vapor deposition (“PECVD”) process is disclosed. Electronic devices containing insulating layers of thermally stable ultralow dielectric constant materials that are prepared by the method are further disclosed. To enable the fabrication of thermally stable ultralow dielectric constant film, specific precursor materials are used, such as, cyclic siloxanes and organic molecules containing ring structures, for instance, tetramethylcyclotetrasiloxane and cyclopentene oxide.
摘要:
A method of forming an integrated ferroelectric/CMOS structure which effectively separates incompatible high temperature deposition and annealing processes is provided. The method of the present invention includes separately forming a CMOS structure and a ferroelectric delivery wafer. These separate structures are then brought into contact with each and the ferroelectric film of the delivery wafer is bonded to the upper conductive electrode layer of the CMOS structure by using a low temperature anneal step. A portion of the delivery wafer is then removed providing an integrated FE/CMOS structure wherein the ferroelectric capacitor is formed on top of the CMOS structure. The capacitor is in contact with the transistor of the CMOS structure through all the wiring levels of the CMOS structure.
摘要:
An amorphous fluorinated carbon film for use as a dielectric insulating layer in electrical devices is formed from a fluorinated cyclic hydrocarbon precursor. The precursor may be selected from the group consisting of hexafluorobenzene, 1,2-diethynyltetrafluorobenzene and 1,4-bis(trifluoromethyl) benzene. The film is deposited by a radiation or beam assisted deposition technique such as an ion beam assisted deposition method, a laser assisted deposition method, or a plasma assisted chemical vapor deposition method. The film is thermally stable in non-oxidizing environment at temperatures up to 400.degree. C. and has a low dielectric constant of less than 3.0. The film can be suitably used as an insulator for spacing apart conductors in an interconnect structure.
摘要:
An amorphous fluorinated carbon film for use as a dielectric insulating layer in electrical devices is formed from a fluorinated cyclic hydrocarbon precursor. The precursor may be selected from the group consisting of hexafluorobenzene, 1,2-diethynyltetrafluorobenzene and 1,4-bis(trifluoromethyl) benzene. The film is deposited by a radiation or beam assisted deposition technique such as an ion beam assisted deposition method, a laser assisted deposition method, or a plasma assisted chemical vapor deposition method. The film is thermally stable in non-oxidizing environment at temperatures up to 400.degree. C. and has a low dielectric constant of less than 3.0. The film can be suitably used as an insulator for spacing apart conductors in an interconnect structure.
摘要:
A capacitor structure is provided, with a first conductor on top of a substrate, a first non-conductor on top of and substantially in register with the first conductor, the first conductor and first non-conductor having a first opening formed therein, a non-conductive sidewall spacer formed in the first opening, the non-conductive sidewall spacer having a second opening formed therein, and a second conductor formed in the second opening.
摘要:
Structures for memory cell applications, including capacitors for DRAM and ferroelectric memory cells from FRAM, whose method of manufacture consists of depositing a ferroelectric or high-epsilon dielectric material to completely fill a cavity whose geometrical width is the sole determinant of the thickness of the electrically active portion of the ferroelectric or high-epsilon dielectric layer in the final device. In the preferred embodiment, the cavity into which the dielectric is deposited is defined by the gap between the plate and stack electrodes which are deposited and patterned in a through-mask plating step prior to the dielectric deposition.
摘要:
The present invention relates to semiconductor devices comprising as one of their structural components diamond-like carbon as an insulator for spacing apart one or more levels of a conductor on an integrated circuit chip. The present invention also relates to a method for forming an integrated structure and to the integrated structure produced therefrom. The present invention further provides a method for selectively ion etching a diamond-like carbon layer from a substrate containing such a layer.
摘要:
The present invention provides a prebent ceramic suspension which includes a ceramic load beam which is bent by a stress patch. With thin film techniques the stress patch is formed on top of the load beam. In the preferred embodiment the patch is amorphous hydrogenated diamond-like carbon. When the suspension is on a wafer the carbon patch exerts a compressive stress on a top surface of the load beam just under the patch. When the suspension is released from the wafer the compressive patch exerts tensile forces on the top surface of the load beam causing an end of the load beam to bend toward the wafer. The amount of bending of the suspension can be accurately controlled by the cross sections of the load beam and the patch as well as the lateral dimensions of the patch. Further control can be achieved by controlling the hydrogen, nitrogen and other additive components of the carbon patch. After fabrication bending can be lessened by machining portions of the patch with a laser beam to effectively negate the stress of these portions. Still further, the patch can be laterally configured so that the suspension forms an arc when preloaded on a disk. During fabrication various layers can be formed by thin film deposition to form an integrated magnetic head-slider-suspension. A pair of prebent ceramic suspensions can be preloaded on adjacent magnetic disks by a single actuator arm.
摘要:
The present invention relates to semiconductor devices comprising as one of their structural components diamond-like carbon as an insulator for spacing apart one or more levels of a conductor on an integrated circuit chip. The present invention also relates to a method for forming an integrated structure and to the integrated structure produced therefrom. The present invention further provides a method for selectively ion etching a diamond-like carbon layer from a substrate containing such a layer.