Methods of forming gate contact over active region for vertical FinFET, and structures formed thereby

    公开(公告)号:US10559686B2

    公开(公告)日:2020-02-11

    申请号:US16018970

    申请日:2018-06-26

    Abstract: Methods of making a vertical FinFET device having an electrical path over a gate contact landing, and the resulting device including a substrate having a bottom S/D layer thereover and fins extending vertically therefrom; a bottom spacer layer over the bottom S/D layer; a HKMG layer over the bottom spacer layer; a top spacer layer over the HKMG layer; a top S/D layer on top of each fin; top S/D contacts formed over the top S/D layer; an upper ILD layer present in spaces around the top S/D contacts; an isolation dielectric within a portion of a recess of top S/D contacts located above adjacent fins; a gate contact landing within a remaining portion of the recess; a gate contact extending vertically from a bottom surface of the gate contact landing and contacting a portion of the HKMG layer; and an electrical path over at least the gate contact landing.

    Method of manufacturing a vertical SRAM with cross-coupled contacts penetrating through common gate structures

    公开(公告)号:US10529724B2

    公开(公告)日:2020-01-07

    申请号:US16056660

    申请日:2018-08-07

    Abstract: A vertical SRAM cell includes a first (1st) inverter having a 1st common gate structure operatively connecting channels of a 1st pull-up (PU) and a 1st pull-down (PD) transistor. A 1st metal contact electrically connects bottom source/drain (S/D) regions of the 1st PU and 1st PD transistors. A second (2nd) inverter has a 2nd common gate structure operatively connecting channels of a 2nd PU and a 2nd PD transistor. A 2nd metal contact electrically connects bottom S/D regions of the 2nd PU and 2nd PD transistors. A 1st cross-coupled contact electrically connects the 2nd common gate structure to the 1st metal contact. The 2nd common gate structure entirely surrounds a perimeter of the 1st cross-coupled contact. A 2nd cross-coupled contact electrically connects the 1st common gate structure to the 2nd metal contact. The 1st common gate structure entirely surrounds a perimeter of the 2nd cross-coupled contact.

    METHOD FOR FORMING AND TRIMMING GATE CUT STRUCTURE

    公开(公告)号:US20190341468A1

    公开(公告)日:2019-11-07

    申请号:US15971043

    申请日:2018-05-04

    Abstract: A method includes forming a semiconductor device including a plurality of fins formed above a substrate, an isolation structure positioned between the plurality of fins, a plurality of sacrificial gate structures defining gate cavities, and a first dielectric material positioned between the sacrificial gate structures. A gate cut structure is formed in a first gate cavity. A trim etch process is performed to reduce a width of the gate cut structure. Replacement gate structures are formed in the gate cavities after performing the trim etch process. A first replacement gate structure in the first gate cavity is segmented by the gate cut structure.

    CONTACTS FORMED WITH SELF-ALIGNED CUTS
    100.
    发明申请

    公开(公告)号:US20190295898A1

    公开(公告)日:2019-09-26

    申请号:US16403745

    申请日:2019-05-06

    Abstract: Structures and methods of fabricating structures that include contacts coupled with a source/drain region of a field-effect transistor. Source/drain regions are formed adjacent to a temporary gate structure. A sacrificial layer may be disposed over the source/drain regions and a dielectric pillar is formed in the sacrificial layer between the source/drain regions, followed by deposition of a fill material, replacement of the temporary gate structure with a functional gate structure, and removal of the fill material. Alternatively, the fill material is formed first and the temporary gate structure is replaced by a functional gate structure; following removal of the fill material, a sacrificial layer is disposed over the source/drain regions and a dielectric pillar is formed in the sacrificial layer between the source/drain regions. A conductive layer having separate portions contacting the separate source/drain regions is formed, with the dielectric pillar separating the portions of the conductive layer.

Patent Agency Ranking