摘要:
The invention features devices and methods for detecting, enriching, and analyzing circulating tumor cells and other particles. The invention further features methods of diagnosing a condition, e.g., cancer, in a subject by analyzing a cellular sample from the subject.
摘要:
The invention features devices and methods for detecting, enriching, and analyzing circulating tumor cells and other particles. The invention further features methods of diagnosing a condition, e.g., cancer, in a subject by analyzing a cellular sample from the subject.
摘要:
A method for preserving biological material includes the steps of placing the biological material in thermal contact with a cryogenically coolable environment, applying radiant energy to the biological material to maintain the temperature of the biological material at physiological temperatures, cooling the surrounding environment to a temperature below the glass phase transition temperature of the biological material, and rapidly stopping the application of radiant energy to the biological material. The method produces cooling rates so rapid that the biological material is vitrified without an opportunity for ice crystals to form.
摘要:
This invention is directed to an efficient cryopreservation package desgin of harvested mammalian tissues and living cultured tissue equivalents made by in vitro technology. The invention involves immersing a mammalian tissue or cultured tissue equivalent in a cryoprotectant solution, agitating the cryoprotectant solution and the immersed tissue to achieve effective penetration of the cryoprotectant solution into the tissue, and then freezing the tissue at a very slow freezing rate. In the freezing step, extracellular ice formation is initiated by seeding. The cryopreserved tissue may be stored for indefinite periods of time prior to use. The cultured tissue equivalent is an in vitro model of the equivalent human tissue, such as skin or cornea, which, when retrieved from storage can be used for transplantation or implantation in vivo or for screening compounds in vitro.
摘要:
The present invention generally relates to methods and compositions to determine viability of an organ for transplantation and other medical purposes. One aspect of the invention relates to a method for assessing the viability of an organ by measuring the energy parameters to determine the energy level of the organ by determining the stored cellular energy (e.g., ATP levels), and/or energy consumption over a particular time period of viability. The energy parameters can be compared to reference energy parameters as a highly accurate and reliable prediction of viable cell yield, and organ viability. Another aspect of the invention relates methods to preserve or extend the time period of viability of an organ any combination of (i) preservation perfusion of the organ to prevent ischemic damage, (ii) chemical metabolic suppression of the organ e.g., using metabolic suppressants, (iii) metabolic suppression by physical or environmental conditions, e.g., sub-zero non-freezing storage.
摘要:
Capturing particles includes introducing a fluid sample, which includes particles of a first type, into a first channel of a microfluidic device and flowing the fluid sample past a porous or partially porous membrane. The pores fluidly connect the first channel to a second channel, and the device further includes multiple binding moieties on a first side of the porous membrane adjacent to the first channel. The binding moieties are capable of binding to the first type of particles. Capturing particles also includes creating a pressure difference between the first and second channels to enable the fluid sample to flow from the first channel through the porous membrane into the second channel and to direct the particles toward the binding moieties, thereby capturing the first type of particles. In addition, by creating a modified capture surface that is impermeable near the walls of the channels, capture efficiencies and throughput can be increased.
摘要:
The invention features methods of quantifying cells in a sample by lysing the cells followed by the measurement of at least one intracellular component. Methods of the invention are especially useful for quantifying small numbers of cells, e.g., over a large surface area or volume compared to the cell size. In a preferred embodiment, methods of the invention are performed using a microfluidic device.
摘要:
The devices and systems described herein include one or more fluid paths, e.g., channels, and one or more selectively permeable obstacles arranged in the fluid path(s), each including a plurality of aligned nanostructures, e.g., nanotubes or nanorods, defining an outer surface of the obstacle and an internal network of voids. The obstacle(s) can further include binding moieties applied to the outer surface and/or to the surfaces of the individual nanostructures within the obstacle(s). The devices can be manufactured by forming the dense groupings of nanostructures to extend outwards and upwards from a substrate; forming a fluidic channel, bonding the fluidic channel to the substrate; and optionally applying binding moieties to the obstacles. The devices can be used to manipulate cells within fluid samples.
摘要:
This disclosure relates to methods and devices to count particles of interest, such as cells. The methods include obtaining a fluid sample that may contain particles of interest; counting all types of particles in a portion of the sample using a first electrical differential counter to generate a first total; removing any particles of interest from the portion of the fluid sample; counting any particles remaining in the portion of the fluid sample using a second electrical differential counter after the particles of interest are removed to generate a second total; and calculating a number of particles of interest originally in the fluid sample by subtracting the second total from the first total, wherein the difference is the number of particles of interest in the sample. These methods and related devices can be used, for example, to produce a robust, inexpensive diagnostic kit for CD4+ T cell counting in whole blood samples.
摘要:
Various systems, methods, and devices are provided for focusing particles suspended within a moving fluid into one or more localized stream lines. The system can include a substrate and at least one channel provided on the substrate having an inlet and an outlet. The system can further include a fluid moving along the channel in a laminar flow having suspended particles and a pumping element driving the laminar flow of the fluid. The fluid, the channel, and the pumping element can be configured to cause inertial forces to act on the particles and to focus the particles into one or more stream lines.