摘要:
An anisotropic etching process is disclosed in which two sources of process gas are provided to a plasma reactor having at least three electrodes. In a plasma, the first process gas provides etchant species which are reactive with a substrate and the second process gas provides barrier species which protect trench sidewalls from reaction with the etchant species. For etching silicon, the first process gas may be chlorine, chloro-trifluoromethane, oxygen, etc., and the second process gas may be C.sub.2 F.sub.6, SF.sub.6, BCl.sub.3, or other compound that either combines with etchant species on a trench sidewall or forms a protective polymer film on such trench sidewall. A disclosed plasma reactor includes a grounded first electrode which forms part of the reactor's enclosure, a coiled second electrode disposed above and separated from the reactor enclosure by a dielectric shield, and a planar third electrode located below the substrate to be etched. A plasma is generated by providing radio frequency energy from the second electrode to the enclosure interior. The charged species from that plasma are directed to the substrate by applying a bias between the first and third electrodes.
摘要:
A process for forming an integrated circuit structure is described wherein individual integrated circuit devices such as MOS or bipolar transistors are constructed on and in a semiconductor substrate and one or more layers of metal interconnects are constructed on and in a second substrate, preferably of similar thickness, and the two substrates are then aligned and bonded together to thereby provide electrical interconnections of individual integrated circuit devices on the semiconductor substrate with appropriate metal interconnects on the second substrate to provide the desired integrated circuit structure. The one or more layers of metal interconnects are formed on the second substrate by the steps of forming a pattern of metal contacts in the second substrate and level with the surface of the substrate; forming a metal layer over the substrate, preferably of a different metal than the metal contacts; patterning the metal layer to form vias; forming a first layer of dielectric material on the surface of the substrate over the exposed portions of the metal contacts and around the metal vias; forming a further metal layer over the first layer of dielectric material and the metal vias, preferably using a different metal than used for the metal vias; patterning the further metal layer into metal interconnects; and depositing a second layer of dielectric material over the exposed portions of the first layer of dielectric material and around the metal interconnects. In a preferred embodiment, over the uppermost metal layer is formed a layer of low melting alloy material (solder) prior to the step of patterning this metal layer to facilitate the electrical connection of the metal interconnect structure.
摘要:
The port in a packet network switching system that a packet should be associated with is determined by retrieving packet address information for a packet that is to be transmitted. A predetermined number of bits from the packet address information is selected to use a hash key, which is used to compute a table address. The contents of the table at that address are compared with the packet address information. If it matches, the packet is transmitted over the port associated with that particular destination address. If it does not match, the table address is incremented by one, and the contents of the new table location identified by the incremented address are compared with the packet address information. A high speed digital video network apparatus which utilizes the hashing function is implemented on a single integrated circuit chip, and includes a network protocol processing system interconnection, compression/decompression circuits, and encoder/decoder circuits.
摘要:
The fitness of a cell placement for an integrated circuit chip is optimized by relocating at least some of cells to new locations that provide lower interconnect congestion. For each cell, the centroid of the net of cells to which the cell is connected is computed. The cell is then moved toward the centroid by a distance that is equal to the distance from the current position of the cell to the centroid multiplied by a "chaos" factor .lambda.. The value of .lambda. is selected such that the cell relocation operations will cause the placement to converge toward an optimal configuration without chaotic diversion, but with a sufficiently high chaotic element to prevent the optimization operation from becoming stuck at local fitness maxima. The new cell locations can be modified to include the effects of cells in other locations, such as by incorporating a function of cell density gradient or force direction into the computation. This spreads out clumps of cells so that the density of cells is more uniform throughout the placement. The attraction between cells in the nets is balanced against repulsion caused by a high local cell density, providing an optimized tradeoff of wirelength, feasibility and congestion.
摘要:
An adaptive error detection and correction apparatus for an Asynchronous Transfer Mode (ATM) network device comprises a sensing unit for sensing a congestion condition in the ATM network and a global pacing rate unit for adaptively reducing a maximum allowable transmission ratio of ATM cells containing information to idle ATM cells in response to a sensed congestion condition. A processor stores a number corresponding to a relatively high maximum allowable transmission ratio in the global pacing rate register in the absence of a sensed congestion condition, and stores a number corresponding to a relatively low maximum allowable transmission ratio in the global pacing rate register in response to a sensed congestion condition. A controller adjusts the maximum allowable transmission ratio in accordance with the number stored in the global pacing rate register. A plurality of peak pacing rate counters reset to predetermined values upon decrementation to zero, the predetermined values corresponding to service intervals for segmentation of Conversion Sublayer Payload Data Unit (CD-PDU)s. The processor further includes circuitry for assigning the counters to selected CD-PDUs, and sensing the counters to determine whether or not segmentation of the selected CD-PDUs is within the respective service intervals. The apparatus further includes a channel group credit register having bits corresponding to the respective counters.
摘要:
A conductive member is described with a surface of controlled roughness thereon which is useful in the construction of an integrated circuit structure. In a preferred embodiment, the conductive member is formed using a mixture of germanium and silicon which is then oxidized, resulting in the formation of a roughened surface on the germanium/silicon conductive member due to the difference in the respective rates of oxidation of the germanium and silicon. After oxidation of the conductive member, the oxide layer may be removed, leaving the toughened surface on the germanium/silicon conductive member. When an integrated circuit structure such as an EPROM is to be formed using this conductive member with a roughened surface, a further layer of oxide is then deposited over the roughened surface followed by deposition of a second layer of conductive material such as polysilicon or a germanium/silicon mixture, from which the control gate will be formed. A further oxide layer may then be formed over the second conductive layer followed by a patterning step to respectively form the floating gate (from the germanium/silicon layer) and the control gate from the second conductive layer.
摘要:
A technique is described for providing body coloration and colored indicia for indicating one or more characteristics of an integrated circuit device. Package body coloration is one source of information about device characteristics. Other indications relate to colored indicia. The colored indicia are relatively large and easily viewable from distances too great for printed text on the package body to be read comfortably. The indicia is (are) colored other than black or white. Among the visible indicia characteristics which can be used to convey information are: indicia color (or colors on multi-colored indicia), shape, size, orientation, and/or location. Among the various integrated circuit device characteristics which can be conveyed by the indicia characteristics are: device function, device speed, level of testing, degree of rad-hardness, location of reference pin, side, corner or surface, location and function of groups of pins carrying related signals, etc. In order to facilitate assembly, colored indicia matching those on the integrated circuit devices can be printed on a printed circuit board substrate at locations and in orientations on the printed circuit corresponding to the correct assembled positions of the integrated circuit devices. Colored areas can also be incorporated into semiconductor packages to control (alter, modify) the thermal characteristics of the package, particularly in order that thermal stresses on a die operating within the package can be reduced and equalized.
摘要:
A single chip router for a multiplex communication network comprises a packet memory for storing data packets, a Reduced Instruction Set Computer (RISC) processor for converting the packets between a Local Area Network (LAN) protocol and a Wide Area Network (WAN) protocol, a LAN interface and a WAN interface. A Direct Memory Access (DMA) controller transfers packets transferring packets between the packet memory and the LAN and WAN interfaces. A packet attribute memory stores attributes of the data packets, and an attribute processor performs a non-linear hashing algorithm on an address of a packet being processed for accessing a corresponding attribute of said packet in the packet attribute memory. An address window filter identifies the address of a packet being processed by examining only a predetermined portion of said address, and can comprise a dynamic window filter or a static window filter.
摘要:
In a physical design automation system for producing an optimized cell placement for an integrated circuit chip, a placement optimization methodology is decomposed into a plurality of cell placement optimization processes that are performed simultaneously by parallel processors on input data representing the chip. The results of the optimization processes are recomposed to produce an optimized cell placement. The fitness of the optimized cell placement is analyzed, and the parallel processors are controlled to selectively repeat performing the optimization processes for further optimizing the optimized cell placement if the fitness does not satisfy a predetermined criterion. The system can be applied to initial placement, routing, placement improvement and other problems. The processors can perform the same optimization process on different placements, or on areas of a single placement. Alternatively, the processors can perform different optimization processes simultaneously on a single initial placement, with the resulting processed placement having the highest fitness being selected as the optimized placement. The processors can further selectively reprocess areas of a placement having high cell interconnect congestion or other low fitness parameters.
摘要:
A microelectronic integrated circuit includes a semiconductor substrate, and a plurality of microelectronic devices formed on the substrate. Each device has a periphery defined by a triangle, and includes an active area formed within the periphery. First and second terminals are formed in the active area adjacent to two vertices of the triangle respectively, and first to third gates are formed between the first and second terminals. The gates have contacts formed outside the active area adjacent to a side of the triangle between the two vertices. The power supply connections to the first and second terminals, the conductivity type (NMOS or PMOS), and the addition of a pull-up or a pull-down resistor are selected for each device to provide a desired AND, NAND, OR or NOR function. A third terminal can be formed between two of the gates and used as an output terminal to provide an AND/OR logic function. The devices are interconnected using three direction routing based on hexagonal geometry.