摘要:
The present invention teaches a method for fabricating semiconductors. The method initially comprises the step of forming a conformal layer superjacent at least two conductive layers. The conformal layer preferably comprises tetraethylorthosilicate ("TEOS") and has a thickness of at least 50 .ANG.. Subsequently, a barrier layer is formed superjacent the conformal layer to prevent subsequent layers from diffusing into active regions. The barrier layer preferably comprises Si.sub.3 N.sub.4, though other suitable materials known to one of ordinary skill in the art may be employed. Further, a glass layer is then formed superjacent the barrier layer. The glass layer comprises at least one of SiO.sub.2, phosphosilicate glass, borosilicate glass, and borophosphosilicate glass, and has a thickness of at least 1 k.ANG.. Upon forming the glass layer, the glass layer is heated to a temperature of at least 800.degree. C. for at least 15 minutes while introducing H.sub.2 and O.sub.2 at a substantially high temperature to cause vaporization, thereby causing the glass layer to reflow. Next, the glass layer is exposed to a gas and radiant energy for approximately 5 seconds to 60 seconds, thereby making said glass layer substantially planar. The radiant energy generates a temperature substantially within the range of 700.degree. C. to 1250.degree. C. Further, the gas comprises at least one of N.sub.2, NH.sub.3, O.sub.2, N.sub.2 O, Ar, Ar--H.sub.2, H.sub.2, GeH.sub.4, and a Fluorine based gas.
摘要:
An improved storage node junction between a doped active area in a semiconductor substrate and an overlying layer of polysilicon, such as the storage node junction in a DRAM memory cell. The area and perimeter of the storage node junction is significantly reduced and the junction is moved away from the adjacent isolation structure. An exemplary semiconductor device incorporating the new junction includes a storage node junction between a conductive polysilicon layer and an active area on a semiconductor substrate, the substrate having been subjected to LOCOS steps to create active areas bounded by a region of field oxide. An insulated gate electrode is formed over an active area on the substrate, which has been doped to a first conductivity type. A contact region comprising a portion of the active area extends laterally between one side of the gate electrode and the field oxide region. The contact region has a first segment adjacent to the gate electrode and a second segment interposed between the first segment and the field oxide region. The first segment is thereby isolated from the field oxide region by the second segment. The first segment is doped to a second conductivity type. A layer of storage polysilicon is formed in electrical contact with the first segment of the contact region but not the second segment of the contact region. The storage polysilicon is isolated from the field oxide through an insulating layer interposed between the storage polysilicon and the second segment of the contact region.
摘要:
The present invention is a three-transistor (3-T) SRAM cell that is made up of a half latch in combination with a dynamic random access memory (DRAM) cell. In a DRAM cell, the "0" bit state is represented by a discharged cell capacitor--a stable state. The "1" bit state, on the other hand, is represented by a charged cell capacitor--an unstable state, since the capacitor leaks rapidly toward the discharged "0" bit state. The new 3-T SRAM cell incorporates a latch which maintains the charge on the cell capacitor when the cell is in a "1" bit state. The cell circuitry includes a cell access transistor coupled to a capacitor, a pull-down transistor, and a P-channel thin film transistor (TFT) which acts as the capacitor pull-up device, the gate of the P-channel TFT also being the drain of the pull-down transistor. A separate polycrystalline silicon layer functions as the substrate of the TFT pull-up device. The 3-T SRAM cell is one half the size of a 4-T SRAM cell and about twice the size of a DRAM cell.
摘要:
The present invention is a process for forming diffusion areas and field isolation regions on a silicon substrate, by the steps of: growing a field oxide layer on the surface of the substrate; forming a mask pattern which exposes a plurality of spaced-apart regions on the surface of the field oxide layer; removing portions of the field oxide layer in the exposed, spaced-apart regions with an anisotropic etch so as to leave a cavity in each spaced-apart region, each cavity having as its floor an exposed region of the silicon substrate, and having vertical walls of field oxide; angularly chamfering the rim of each cavity with a facet etch; and filling each cavity with silicon using selective epitaxial growth, and using the floor of each cavity as the seed crystal for such growth.
摘要:
The present invention teaches a method for reducing sheet resistance in the fabrication of semiconductor wafers. A silicon substrate having a gate oxide layer thereon is provided in a chamber. Subsequently, a polysilicon layer is formed superjacent the gate oxide layer in situ by exposing the silicon substrate to a first gas comprising at least one of silane, disilane, and dichlorosilane, and radiant energy at a temperature substantially within the range of 500.degree. C. to 1250.degree. C. for at least 10 seconds. The polysilicon substrate can be doped with a material such as phosphorus, arsenic and boron for example, by exposing the polysilicon to a second gas under the stated conditions. A conductive layer comprising at least one of tungsten silicide (WSi.sub.x) and titanium silicide (TiSi.sub.x) can be formed superjacent the polysilicon by exposing the polysilicon to a third gas comprising at least one of WF.sub.6, TMAT and TiCl.sub.4.
摘要:
An improved N-channel field-effect transistor is fabricated by performing a vertical N- implant, aligned to the vertical edges of the gate electrode, in both the source and drain regions of the device. In a first embodiment of the invention intended for use in dynamic random access memory access devices, a dielectric spacer is then formed on the sidewall of the gate electrode adjacent the drain (i.e., the regions which functions as the bitline contact in a DRAM memory cell). A vertical N+ implant, aligned to the exposed vertical edge of that spacer, is performed, in addition to an oblique implant of an N-type impurity. The oblique implant dosage is significantly greater than the N- implant dosage, but significantly less than the N+ implant dosage. In a second embodiment of the invention intended for use in applications where the transistor has no capacitive storage node, spacers are formed on both sidewalls of the gate electrode and the N+ implant, as well as the oblique N-type implant are performed in both the source and drain regions of the device. In preferred embodiments of the invention, phosphorus is utilized as the N- implant impurity, while arsenic is utilized for the other two N-type implants. The oblique implant provides not only reduced electric field strength in the channel region, but also reduced series resistance.
摘要:
A record cleaning device which attaches to the tone arm of a record player for removing dust and other undesirable material from the grooves of a phonograph record without significant interferring with the normal tracking of the phonograph cartridge. The device includes a brush for brushing the undesirable material from the grooves of the phonograph record, and an elongated strip of thin, lightweight and flexible material for flexibly supporting the brush above and in contact with the grooves of the phonograph record in which the flexing action of the brush and that of the strip in relation to the brush weight allows for joint, commensurate and comparable flexing action of both during record playback. In a further embodiment a motion damper is mounted between the brush and the strip to stop energy exchange between them and to dampen feedback vibrations to the tone arm.
摘要:
Techniques for forming devices, such as transistors, having vertical junction edges. More specifically, shallow trenches are formed in a substrate and filled with an oxide. Cavities may be formed in the oxide and filled with a conductive material, such a doped polysilicon. Vertical junctions are formed between the polysilicon and the exposed substrate at the trench edges such that during a thermal cycle, the doped polysilicon will out-diffuse doping elements into the adjacent single crystal silicon advantageously forming a diode extension having desirable properties.
摘要:
The present invention relates to methods for forming microelectronic structures in a semiconductor substrate. The method includes selectively removing dielectric material to expose a portion of an oxide overlying a semiconductor substrate. Insulating material may be formed substantially conformably over the oxide and remaining portions of the dielectric material. Spacers may be formed from the insulating material. An isolation trench etch follows the spacer etch. An optional thermal oxidation of the surfaces in the isolation trench may be performed, which may optionally be followed by doping of the bottom of the isolation trench to further isolate neighboring active regions on either side of the isolation trench. A conformal material may be formed substantially conformably over the spacer, over the remaining portions of the dielectric material, and substantially filling the isolation trench. Planarization of the conformal material may follow.
摘要:
The present invention relates to methods for forming microelectronic structures in a semiconductor substrate. The method includes selectively removing dielectric material to expose a portion of an oxide overlying a semiconductor substrate. Insulating material may be formed substantially conformably over the oxide and remaining portions of the dielectric material. Spacers may be formed from the insulating material. An isolation trench etch follows the spacer etch. An optional thermal oxidation of the surfaces in the isolation trench may be performed, which may optionally be followed by doping of the bottom of the isolation trench to further isolate neighboring active regions on either side of the isolation trench. A conformal material may be formed substantially conformably over the spacer, over the remaining portions of the dielectric material, and substantially filling the isolation trench. Planarization of the conformal material may follow.