Abstract:
A process for the deposition of a thin film of a desired material on a surface comprising: (i) providing a continuous stream of amorphous solid particles of desired material suspended in at least one carrier gas, the solid particles having a volume-weighted mean particle diameter of less than 500 nm, at an average stream temperature below the glass transition temperature of the solid particles of desired material, (ii) passing the stream provided in (i) into a heating zone, and heating the stream in the heating zone to elevate the average stream temperature to above the glass transition temperature of the solid particles of desired material, wherein no substantial chemical transformation of the desired material occurs due to heating of the desired material, (iii) exhausting the heated stream from the heating zone through at least one distributing passage, at a rate substantially equal to its rate of addition to the heating zone in step (ii), wherein the carrier gas does not undergo a thermodynamic phase change upon passage through heating zone and distribution passage, and (iv) exposing a receiver surface that is at a temperature below the temperature of the heated stream to the exhausted flow of the heated stream, and depositing particles of the desired material to form a thin uniform layer of the desired material on the receiver surface.
Abstract:
A method of forming a thin-film including a capability to remove contaminants from the formed thin-film and/or a substrate on which the thin-film is formed using alcohol. The method includes allowing a substrate holder to support a substract. A first mixture is produced by mixing a condensation polymer containing an element of metal oxide compound and alcohol. Then second mixture is produced by mixing supercritical fluid or liquid carbon dioxide and the first mixture. A thin film is formed by applying the second mixture on a surface of the substrate. After forming the thin-film, the substrate is cleaned by applying alcohol to upper and lower surfaces, preferably the whole upper and lower surfaces, of the substract. The thin-film is crystallized by heating, and the crystallizing may include applying oxygen in a crystallizing chamber. Soft X-rays may be applied to the substrate, during the forming of the thin-film on the surface of the substrate.
Abstract:
The present invention is related to the modifying of substrates with multiple modifying agents in a single continuous system. At least two processing chambers are configured for modifying the substrate in a continuous feed system. The processing chambers can be substantially isolated from one another by interstitial seals. Additionally, the two processing chambers can be substantially isolated from the surrounding atmosphere by end seals. Optionally, expansion chambers can be used to separate the seals from the processing chambers.
Abstract:
A method is taught for forming a layer of electroluminescent material having a controlled thickness and surface uniformity. An electroluminescent material is delivered to a vessel. A fluid to the vessel is also delivered to the vessel. The fluid and the electroluminescent material in the vessel are compressed and heated to form a thermodynamically stable or metastable mixture. The thermodynamically stable or metastable mixture is sprayed at a surface, the fluid vaporizing during spraying with the the electroluminescent material being deposited as a light emitting layer of nanoparticulates on the surface.
Abstract:
Systems, apparatus combinations and methods for producing a coating powder are provided wherein a stream of a powder coating precursor including at least one resin and at least one additional powder coating ingredient is contacted with a process fluid effective to reduce the viscosity of the powder coating precursor to allow processing of the powder coating precursor at a lower temperature.
Abstract:
Coating of a substrate with an organic material, which is characterized in that it comprises liquefying by pressurization a medium which is gaseous at ordinary temperature under 1 atom and liquefies at ordinary temperature under a pressure of 100 atom or less, dissolving or dispersing an organic material in the liquefied medium, and spraying the resulting material mixture onto a substrate in an inert gas atmosphere or comprises bringing a medium having a critical temperature of ordinary temperature or lower and a critical pressure of 100 atm or less into a supercritical state, dissolving or dispersing an organic material in the medium, and spraying the resulting material mixture onto a substrate in an inert gas atmosphere.
Abstract:
The present invention relates to a antimicrobially-treated porous materials and a process for impregnating porous materials with antimicrobial polymers using supercritical media.
Abstract:
An apparatus and method of focusing a functional material is provided. The apparatus includes a pressurized source of fluid in a thermodynamically stable mixture with a functional material. A discharge device having an inlet and an outlet is connected to the pressurized source at the inlet. The discharge device is shaped to produce a collimated beam of functional material, where the fluid is in a gaseous state at a location before or beyond the outlet of the discharge device. The fluid can be one of a compressed liquid and a supercritical fluid. The thermodynamically stable mixture includes one of the functional material being dispersed in the fluid and the functional material being dissolved in the fluid.
Abstract:
An apparatus and method of focusing a functional material is provided. The apparatus includes a pressurized source of fluid in a thermodynamically stable mixture with a functional material. A discharge device having an inlet and an outlet is connected to the pressurized source at the inlet. The discharge device is shaped to produce a collimated beam of functional material, where the fluid is in a gaseous state at a location before or beyond the outlet of the discharge device. The fluid can be one of a compressed liquid and a supercritical fluid. The thermodynamically stable mixture includes one of the functional material being dispersed in the fluid and the functional material being dissolved in the fluid.
Abstract:
A process for manufacturing a metallized substrate using the island coating method, includes depositing a coating layer containing a radiation curable non-volatile film former. The coated part is then vacuum metallized to form the metal islands of the present invention. A layer of clear resinous protective dielectric topcoat containing a radiation curable non-volatile film former is then deposited to completely cover the layer of metal islands while maintaining the aesthetic properties of the metallizing island coating system at a reduced cost and with minimal variability among parts.