Abstract:
This document presents algae-derived antimicrobial fiber substrates, and a method of making the same. The fiber may be a synthetic fiber, but can also be formed as a cellulosic (e.g., cotton). In various implementations, an algae-derived antimicrobial fiber substrate can be made to have identical properties and characteristics of nylon-6 of nylon 6-6 polymer or the like, and yet contain antimicrobial, anti-viral, and/or flame retardant algal derived substances. Any of various species of red algae, brown algae, blue-green algae, and brown seaweed (marine microalgae and/or macroalgae) are known to contain a high level of sulfated polysaccharides with inherent antimicrobial, antiviral, and flame-retardant properties, and can be used as described herein. Additionally disclosed are algae-derived flexible foams, whether open-cell or closed-cell, with inherent antimicrobial, antiviral, and flame resistant properties. Further, a process of manufacturing is presented wherein the process may include one or more of the steps of: harvesting algae-biomass; sufficiently drying the algae biomass; blending the dried algae biomass with a carrier resin and various foaming ingredients; adding an algal-derived antimicrobial compound selected from various natural sulfated polysaccharides present in brown algae, red algae, and/or certain seaweeds (marine microalgae); and adding a sufficient quantity of dried algae biomass to the formulation to adequately create a fire resistant flexible foam material.
Abstract:
The present invention provides a thermally expandable microcapsule that maintains a high expansion ratio and hardly bursts and shrinks even at a high temperature, a foamable thermoplastic resin masterbatch and a foam molded product that are produced using the thermally expandable microcapsule, and a method for producing the thermally expandable microcapsule. The thermally expandable microcapsule comprises a volatile expansion agent included in a shell as a core agent and the shell formed of a polymer, the shell containing a thermosetting resin and a polymer obtainable by polymerization of a monomer composition containing a nitrile-type monomer and a monomer having a carboxyl group, and the thermosetting resin having no radical-polymerizable double bond and at least two functional groups reactive with a carboxyl group per molecule.
Abstract:
Thermoplastic polymers, for example fluoropolymers, are foamed by use of a solid formulation comprising thermoplastic polymer and manganese oxalate.
Abstract:
A foam molding method, a foamed plastic formed by the method, and a foaming agent used in the foam molding method are provided. The foam molding method may include rotating a screw provided in a barrel, feeding a granular or powdered raw material and a foaming agent into the barrel, the foaming agent producing foam through a chemical reaction, melting the fed raw material and producing a gas from the foaming agent, and phase-changing the produced gas to a supercritical state and mixing the gas with the melted raw material.
Abstract:
The invention provides a particulate material comprising porous polymeric microparticles having a mesoporous structure. A process for making the particles is also presented. The process comprises impregnating a porous microparticulate template material with a liquid comprising one or more monomers. The one or more monomers are then polymerized in and/or on the template material to form a polymer, and the template material is then removed to produce the particulate material.
Abstract:
The present invention provides a biodegradable master batch and a preparation method thereof. The biodegradable master batch is prepared by in-situ polymerization of the components in the following formula in weight parts: 10-80 parts of biodegradable monomer or prepolymer, 0.01-5 parts of catalyst, 0.05-5 parts of reaction activator, 0.1-5 parts of thermal stabilizer, 0-80 parts of flame retardant, 0-80 parts of filler, 0-80 parts of antistatic agent, 0-80 parts of pigment, 0-80 parts of foaming agent, and 0-5 parts of surface coupling agent. Provided in the present invention are the biodegradable polymer master batch having good dispersion effect and excellent interface bonding property, and the preparation method thereof.
Abstract:
Reinforced, laminated, impregnated, and materials with composite properties as cross linked polyvinyl alcohol hydrogel structures in bulk or cellular matrix forms that can take essentially any physical shape, or can have essentially any size, degree of porosity and surface texture. They have a wide range of physical properties, unusual and unique combinations of physical properties and unique responses to stress fields, which allows for their use in many end use applications.
Abstract:
A closed cell foam material contains a propylene based polymer comprising from about 5% to about 32% by weight α-olefin units. The propylene based polymer has a heat of fusion, as determined by DSC, of less than 80 J/g. The material also contains 0.5 to 5 phr peroxide, 1.0 to 5.0 phr blowing agent, and 0.1 to 10 phr co-agent. The cells of closed cell foam material have a diameter in the range of 0.1 to 1.5 mm.