Abstract:
A resonator for thermo optic devices is formed in the same process steps as a waveguide and is formed in a depression of a lower cladding while the waveguide is formed on a surface of the lower cladding. Since upper surfaces of the resonator and waveguide are substantially coplanar, the aspect ratio, as between the waveguide and resonator in an area where the waveguide and resonator front one another, decreases thereby increasing the bandwidth of the resonator. The depression is formed by photomasking and etching the lower cladding before forming the resonator and waveguide. Pluralities of resonators are also taught that are formed in a plurality of depressions of the lower cladding. To decrease resonator bandwidth, waveguide(s) are formed in the depression(s) of the lower cladding while the resonator is formed on the surface. Thermo optic devices formed with these resonators are also taught.
Abstract:
Methods for wavelength filtering and structures for accomplishing the same. Wavelength filtering includes forming grooves in a waveguide to define angled surfaces in a path of the waveguide; forming a reflective layer on the angled surfaces; depositing cladding material on top of the waveguide and on the angled surfaces; forming a filter layer on an active region of an opto-electronic device, which transmits a single wavelength and reflects other wavelengths used; depositing the opto-electrical device on the cladding layer such that the filter layer is aligned with a point of incidence of a light beam reflected from the reflective layer; and electrically bonding the opto-electronic device to vias in the waveguide structure.
Abstract:
Apparatus, systems and methods for use in analyzing discrete reactions at ultra high multiplex with reduced optical noise, and increased system flexibility. Apparatus include substrates having integrated optical components that increase multiplex capability by one or more of increasing density of reaction regions, improving transmission of light to or collection of light from discrete reactions regions. Integrated optical components include reflective optical elements which re-direct illumination light and light emitted from the discrete regions to more efficiently collect emitted light. Particularly preferred applications include single molecule reaction analysis, such as polymerase mediated template dependent nucleic acid synthesis and sequence determination.
Abstract:
Processes for making high multiplex arrays for use in analyzing discrete reactions at ultra high multiplex with reduced optical noise, and increased system flexibility. The high multiplex arrays include substrates having integrated optical components that increase multiplex capability by one or more of increasing density of reaction regions, improving transmission of light to or collection of light from discrete reactions regions. Integrated optical components include reflective optical elements which re-direct illumination light and light emitted from the discrete regions to more efficiently collect emitted light. Particularly preferred applications include single molecule reaction analysis, such as polymerase mediated template dependent nucleic acid synthesis and sequence determination.
Abstract:
A method of manufacturing a photodetector structure is provided. The method includes forming a structural layer by making a trench in a bulk silicon substrate and filling the trench with a cladding material, forming a single-crystallized silicon layer on the structural layer, and forming a germanium layer on the single-crystallized silicon layer.
Abstract:
N-V centers in diamond are created in a controlled manner. In one embodiment, a single crystal diamond is formed using a CVD process, and then annealed to remove N-V centers. A thin layer of single crystal diamond is then formed with a controlled number of N-V centers. The N-V centers form Qubits for use in electronic circuits. Masked and controlled ion implants, coupled with annealing are used in CVD formed diamond to create structures for both optical applications and nanoelectromechanical device formation. Waveguides may be formed optically coupled to the N-V centers and further coupled to sources and detectors of light to interact with the N-V centers.
Abstract:
Development of Integrated Optical Circuits depends greatly on progress in coupling light to and between chip devices. Exemplary disclosed embodiments provide a system and method of fabricating couplers for optical chips that may allow for access to devices on the entire chip surface. Cantilever couplers comprising optical waveguides are deflected out-of-plane creating access to remote portions of devices. An exemplary system and method may provide waveguides with tunable angles of deflection creating greater flexibility in optical coupling options.
Abstract:
Provided is a method of manufacturing a semiconductor device. According to the method, a first buried oxide layer is formed in the semiconductor substrate in a first region, such that a first semiconductor layer is defined on the first buried oxide layer. An active portion is defined by forming a trench in the semiconductor substrate in a second region. A capping semiconductor pattern is formed on a top surface and an upper portion of a sidewall of the active portion. An oxide layer is formed by oxidizing the capping semiconductor pattern and an exposed lower portion of the sidewall of the active portion, such that the oxide layer surrounds a non-oxidized portion of the active portion. The non-oxidized portion of the active portion is a core and one end of the core is connected to a first optical device formed at the first semiconductor.
Abstract:
A manufacturing method of a photonic crystal is provided. In the method, a high-refractive-index material is conformally deposited on an exposed portion of a periodic template composed of a low-refractive-index material by an atomic layer deposition process so that a difference in refractive indices or dielectric constants between the template and adjacent air becomes greater, which makes it possible to form a three-dimensional photonic crystal having a superior photonic bandgap. Herein, the three-dimensional structure may be prepared by a layer-by-layer method.
Abstract:
A method of producing a planar substrate having waveguide channels, which method comprises: (i) providing a tube (6) of a substrate material; (ii) depositing silica layers (110) on the inside of the tube (6), the silica layers (110) being doped with a photosensitive material; (iii) drawing the tube (6) so that the cross-sectional size of the tube (109) is reduced; (iv) before or after the reducing of the cross-sectional size of the tube (6), causing the tube (6) to collapse into a flat shape by applying a low pressure to the tube, whereby the deposited silica layers together form a photosensitive silica layer (111); (v) cutting to required lengths the tube (6) which has been collapsed and reduced in cross-sectional size; and (vi) using laser writing to define waveguide channels in the cut lengths of the tube (6) and thereby to produce the planar substrate having the waveguide channels.