摘要:
A method of manufacturing a photodetector structure is provided. The method includes forming a structural layer by making a trench in a bulk silicon substrate and filling the trench with a cladding material, forming a single-crystallized silicon layer on the structural layer, and forming a germanium layer on the single-crystallized silicon layer.
摘要:
Semiconductor devices having stacked structures and methods for fabricating the same are provided. A semiconductor device includes at least one single block including a first semiconductor chip and a second semiconductor chip stacked thereon. Each of the first and second semiconductor chips includes a semiconductor substrate including a through-electrode, a circuit layer on a front surface of the semiconductor substrate, and a front pad that is provided in the circuit layer and is electrically connected to the through-electrode. The surfaces of the semiconductor substrates face each other. The circuit layers directly contact each other such that the semiconductor chips are bonded to each other.
摘要:
Semiconductor devices having an optical transceiver include a cladding on a substrate, a protrusion vertically extending trough the cladding and materially in continuity with the substrate, and a coupler on the cladding and the protrusion.
摘要:
A method of forming a silicon based optical waveguide can include forming a silicon-on-insulator structure including a non-crystalline silicon portion and a single crystalline silicon portion of an active silicon layer in the structure. The non-crystalline silicon portion can be replaced with an amorphous silicon portion and maintaining the single crystalline silicon portion and the amorphous portion can be crystallized using the single crystalline silicon portion as a seed to form a laterally grown single crystalline silicon portion including the amorphous and single crystalline silicon portions.
摘要:
Optical input/output (I/O) devices, which include a substrate including a trench, a waveguide within the trench of the substrate; and a photodetector within the trench and optically connected to the waveguide. An upper surface of the photodetector is at a same level as an upper surface of the waveguide.
摘要:
A method for forming a light guide layer with improved transmission reliability in a semiconductor substrate, the method including forming a trench in the semiconductor substrate, forming a cladding layer and a preliminary light guide layer in the trench such that only one of opposite side end portions of the preliminary light guide layer is in contact with an inner sidewall of the trench, and performing a thermal treatment on the substrate to change the preliminary light guide layer into the light guide layer.
摘要:
An embodiment of a semiconductor device includes a semiconductor substrate, a first insulating layer formed over the semiconductor substrate, and a first semiconductor layer formed over the first insulation layer. At least one gettering region is formed in at least one of the first insulating layer and the first semiconductor layer. The gettering region includes a plurality of gettering sites, and at least one gettering site includes one of a precipitate, a dispersoid, an interface with the dispersoid, a stacking fault and a dislocation.
摘要:
In a method of manufacturing a semiconductor device, a string structure including a selection transistor and a memory cell on a substrate. An insulation layer pattern is formed on the substrate to cover the string structure. The insulation layer pattern includes at least one opening exposing a portion of the substrate adjacent to the selection transistor. A seed layer including a single-crystalline material is formed in the opening. An amorphous thin film including an amorphous material is formed on the insulation layer pattern and the seed layer. The amorphous thin film is transformed into a single-crystalline thin film, using the single-crystalline material in the seed layer as a seed during a phase transition of the amorphous thin film, to form a channel layer on the insulation layer pattern and the seed layer. Therefore, the semiconductor device including the channel layer having the single-crystalline thin film may be manufactured.
摘要:
Integrated circuit devices are provided including a first single-crystalline layer and an insulating layer pattern on the first single-crystalline layer. The insulating layer pattern has an opening therein that partially exposes the first single-crystalline layer. A seed layer is in the opening. A second single-crystalline layer is on the insulating layer pattern and the seed layer. The second single-crystalline layer has a crystalline structure substantially the same as that of the seed layer. A transcription-preventing pattern is on the second single-crystalline layer and a third single-crystalline layer on the transcription-preventing pattern and the second single-crystalline layer. The transcription-preventing pattern is configured to limit transcription of defective portions in the second single-crystalline layer into the third single-crystalline layer.
摘要:
Methods of fabricating a semiconductor device are provided. A semiconductor substrate is provided that includes a single crystalline structure within at least a defined region thereof. A thin layer is formed on the semiconductor substrate. The thin layer is patterned to form a plurality of spaced apart field structures and to expose therebetween portions of the semiconductor substrate having the single crystalline structure. A non-crystalline layer is formed on the exposed portions of the semiconductor substrate having the single crystalline structure. The non-crystalline layer is planarized to expose upper surfaces of the field structures and define non-crystalline active structures from the non-crystalline layer between the field structures. A laser beam is generated that heats the non-crystalline active structures to change them into single crystalline active structures having substantially the same single crystalline structure as the defined region of the semiconductor substrate.